scholarly journals Free Vibration Analysis of Functionally Graded Shells Using an Edge-Based Smoothed Finite Element Method

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 684 ◽  
Author(s):  
Tien Dat Pham ◽  
Quoc Hoa Pham ◽  
Van Duc Phan ◽  
Hoang Nam Nguyen ◽  
Van Thom Do

An edge-based smoothed finite element method (ES-FEM) combined with the mixed interpolation of tensorial components technique for triangular shell element (MITC3), called ES-MITC3, for free vibration analysis of functionally graded shells is investigated in this work. In the formulation of the ES-MITC3, the stiffness matrices are obtained by using the strain-smoothing technique over the smoothing domains that are formed by two adjacent MITC3 triangular shell elements sharing an edge. The strain-smoothing technique can improve significantly the accuracy and convergence of the original MITC3. The material properties of functionally graded shells are assumed to vary through the thickness direction by a power–rule distribution of volume fractions of the constituents. The numerical examples demonstrated that the present ES-MITC3method is free of shear locking and achieves the high accuracy compared to the reference solutions in the literature.

2016 ◽  
Vol 54 (3) ◽  
pp. 402 ◽  
Author(s):  
Tran Huu Quoc ◽  
Tran Minh Tu ◽  
Nguyen Van Long

In this paper, a new eight-unknown shear deformation theory is developed for bending and free vibration analysis of functionally graded plates by finite element method. The theory based on full twelve-unknown higher order shear deformation theory, simultaneously satisfy zeros transverse stresses at top and bottom surface of FG plates. A four-node rectangular element with sixteen degrees of freedom per node is used. Poisson’s ratios, Young’s moduli and material densities vary continuously in thickness direction according to the volume fraction of constituents which is modeled as power law functions. Results are verified with available results in the literature. Parametric studies are performed for different power law index, side-to-thickness ratios.


2019 ◽  
Vol 17 (02) ◽  
pp. 1845006 ◽  
Author(s):  
F. Wu ◽  
W. Zeng ◽  
L. Y. Yao ◽  
M. Hu ◽  
Y. J. Chen ◽  
...  

Recently, the edge-based and node-based smoothed finite element method (ES-FEM and NS-FEM) has been proposed for Reissner–Mindlin plate problems. In this work, in order to utilize the numerical advantages of both ES-FEM and NS-FEM for static and vibration analysis, a hybrid smoothing technique based beta FEM ([Formula: see text]FEM) is presented for Reissner–Mindlin plate problems. A tunable parameter [Formula: see text] is introduced to tune the proportion of smoothing domains calculated by ES-FEM or NS-FEM, which controlled the accuracy of the results. Numerical illustrations in both static and free vibration analysis are conducted. The shear locking free property, converge property and dynamic stability are carefully examined via several well-known benchmark examples. Moreover, an experimental test is carefully designed and conducted for validations, in which the mode values and shape of a rectangular steel plate is tested. Numerical examples demonstrate the advantages of [Formula: see text]FEM, in comparison with the standard FEM, ES-FEM and NS-FEM using the same meshes. The numerical and experimental results are in good agreement with each other and the [Formula: see text]FEM achieves the best accuracy among all the methods for the static or free vibration analysis of plates.


Sign in / Sign up

Export Citation Format

Share Document