scholarly journals A Numerical Solution of Fredholm Integral Equations of the Second Kind Based on Tight Framelets Generated by the Oblique Extension Principle

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 854 ◽  
Author(s):  
Mutaz Mohammad

In this paper, we present a new computational method for solving linear Fredholm integral equations of the second kind, which is based on the use of B-spline quasi-affine tight framelet systems generated by the unitary and oblique extension principles. We convert the integral equation to a system of linear equations. We provide an example of the construction of quasi-affine tight framelet systems. We also give some numerical evidence to illustrate our method. The numerical results confirm that the method is efficient, very effective and accurate.

Author(s):  
S. ABBASBANDY ◽  
T. ALLAHVIRANLOO

In this work, the Adomian decomposition(AD) method is applied to the Fuzzy system of linear Fredholm integral equations of the second kind(FFIE). First the crisp Fredholm integral equation is solved by AD method and then the crisp solution is fuzzified by extension principle. The proposed algorithm is illustrated by solving a numerical example.


2020 ◽  
Author(s):  
Mikhail Kruglyakov ◽  
Alexey Kuvshinov

<p> In this contribution, we present novel global 3-D electromagnetic forward solver based on a numerical solution of integral equation (IE) with contracting kernel. Compared to widely used x3dg code which is also based on IE approach, new solver exploits alternative (more efficient and accurate) numerical algorithms to calculate Green’s tensors, as well as an alternative (Galerkin) method to construct the system of linear equations (SLE). The latter provides guaranteed convergence of the iterative solution of SLE. The solver outperforms x3dg in terms of accuracy, and, in contrast to (sequential) x3dg, it allows for efficient parallel computations, meaning that the code has practically linear scalability up to the hundreds of processors.</p>


Author(s):  
S.C. Shiralashetti ◽  
R.A. Mundewadi

In this paper, we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Haar wavelet collocation method. Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations, solving these equations using MATLAB to compute the Haar coefficients. The numerical results are compared with exact and existing method through error analysis, which shows the efficiency of the technique.


Author(s):  
Ercan Çelik ◽  
Merve Geçmen

In this study, Volterra-Fredholm integral equation is solved by Hosoya Polynomials. The solutions obtained with these methods were compared on the figure and table. And error analysis was done. Matlab programming language has been used to obtain conclusitions, tables and error analysis within a certain algorithm.


This paper makes a short study of Fredholm integral equations related to potential theory and elasticity, with a view to preparing the ground for their exploitation in the numerical solution of difficult boundary-value problems. Attention is drawn to the advantages of Fredholm ’s first equation and of Green’s boundary formula. The latter plays a fundamental and hitherto unrecognized role in the integral equation formula of biharm onic problems.


In this paper, a computational method is presented to solve potential-type Fredholm integral equations of the first kind, equations in which the unknown functions are singular at the endpoints of the integration domain, in addition to the weakly singular logarithmic kernels. This method provides a numerical solution based on the Newton interpolation technique via the Vandermonde matrix, which can accommodate an approximation of the unknown function, in such a manner that its singularity is easily removed, as well as the removal of kernel singularity. In addition, the Gauss–Legendre formula is adapted and applied for the computations of the obtained convergent integrals. Thus, the obtained numerical solution is equivalent to the solution of an algebraic equation in matrix form without applying the collocation method. The numerical solutions of the illustrated example are strongly converging to the exact solution for all values of 1 x  including the end-points 1 whereas the exact solution fails to find the functional values at these end-points; which ensures the powerful and high accuracy of the presented computational technique


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
A. Khalid ◽  
M. N. Naeem ◽  
P. Agarwal ◽  
A. Ghaffar ◽  
Z. Ullah ◽  
...  

AbstractIn the current paper, authors proposed a computational model based on the cubic B-spline method to solve linear 6th order BVPs arising in astrophysics. The prescribed method transforms the boundary problem to a system of linear equations. The algorithm we are going to develop in this paper is not only simply the approximation solution of the 6th order BVPs using cubic B-spline, but it also describes the estimated derivatives of 1st order to 6th order of the analytic solution at the same time. This novel technique has lesser computational cost than numerous other techniques and is second order convergent. To show the efficiency of the proposed method, four numerical examples have been tested. The results are described using error tables and graphs and are compared with the results existing in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsen Alipour ◽  
Dumitru Baleanu ◽  
Fereshteh Babaei

We introduce a new combination of Bernstein polynomials (BPs) and Block-Pulse functions (BPFs) on the interval [0, 1]. These functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid Bernstein Block-Pulse Functions Method (HBBPFM). This method is very simple such that an integral equation is reduced to a system of linear equations. On the other hand, convergence analysis for this method is discussed. The method is computationally very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.


Sign in / Sign up

Export Citation Format

Share Document