scholarly journals An N-Modular Redundancy Framework Incorporating Response-Time Analysis on Multiprocessor Platforms

Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 960 ◽  
Author(s):  
Jaemin Baek ◽  
Jeonghyun Baek ◽  
Jeeheon Yoo ◽  
Hyeongboo Baek

A timing constraint and a high level of reliability are the fundamental requirements for designing hard real-time systems. To support both requirements, the N modular redundancy (NMR) technique as a fault-tolerant real-time scheduling has been proposed, which executes identical copies for each task simultaneously on multiprocessor platforms, and a single correct one is voted on, if any. However, this technique can compromise the schedulability of the target system during improving reliability because it produces N identical copies of each job that execute in parallel on multiprocessor platforms, and some tasks may miss their deadlines due to the enlarged computing power required for completing their executions. In this paper, we propose task-level N modular redundancy (TL-NMR), which improves the system reliability of the target system of which tasks are scheduled by any fixed-priority (FP) scheduling without schedulability loss. Based on experimental results, we demonstrate that TL-NMR maintains the schedulability, while significantly improving average system safety compared to the existing NMR.

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 651 ◽  
Author(s):  
Hyeongboo Baek ◽  
Jaewoo Lee

Hard real-time systems are employed in military, aeronautics, and astronautics fields where deployed systems are susceptible to software faults that can result in functional errors. Thus, there is a need to use fault-tolerant (FT) real-time scheduling. Among the various fault-tolerant real-time scheduling techniques, re-execution has been applied widely to existing real-time systems owing to its simplicity and applicability. However, re-execution requires multiple executions of every task, and some tasks miss their deadlines owing to the prolonged execution time; therefore, it has been found to be suitable for only soft real-time systems. In this paper, we propose an FT policy that can be incorporated into most (if not all) existing real-time scheduling algorithms on multiprocessor systems, which improves the reliability of the target system without a tradeoff against schedulability. As a case study, we apply the FT policy to existing fixed-priority scheduling and earliest deadline zero-laxity scheduling, and we demonstrate that it enhances reliability without schedulability loss.


Author(s):  
Jian (Denny) Lin ◽  
Albert M. K. Cheng ◽  
Doug Steel ◽  
Michael Yu-Chi Wu ◽  
Nanfei Sun

Enabling computer tasks with different levels of criticality running on a common hardware platform has been an increasingly important trend in the design of real-time and embedded systems. On such systems, a real-time task may exhibit different WCETs (Worst Case Execution Times) in different criticality modes. It is well-known that traditional real-time scheduling methods are not applicable to ensure the timely requirement of the mixed-criticality tasks. In this paper, the authors study a problem of scheduling real-time, mixed-criticality tasks with fault tolerance. An optimal, off-line algorithm is designed to guarantee the most tasks completing successfully when the system runs into the high-criticality mode. A formal proof of the optimality is given. Also, a novel on-line slack-reclaiming algorithm is proposed to recover from computing faults before the tasks' deadline during the run-time. Simulations show that an improvement of about 30% in performance is obtained by using the slack-reclaiming method.


Sign in / Sign up

Export Citation Format

Share Document