scholarly journals Existence of Small-Energy Solutions to Nonlocal Schrödinger-Type Equations for Integrodifferential Operators in ℝN

Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Jun Ik Lee ◽  
Yun-Ho Kim ◽  
Jongrak Lee

We are concerned with the following elliptic equations: ( − Δ ) p , K s u + V ( x ) | u | p − 2 u = λ f ( x , u ) in R N , where ( − Δ ) p , K s is the nonlocal integrodifferential equation with 0 < s < 1 < p < + ∞ , s p < N the potential function V : R N → ( 0 , ∞ ) is continuous, and f : R N × R → R satisfies a Carathéodory condition. The present paper is devoted to the study of the L ∞ -bound of solutions to the above problem by employing De Giorgi’s iteration method and the localization method. Using this, we provide a sequence of infinitely many small-energy solutions whose L ∞ -norms converge to zero. The main tools were the modified functional method and the dual version of the fountain theorem, which is a generalization of the symmetric mountain-pass theorem.

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 128
Author(s):  
Jun Ik Lee ◽  
Yun-Ho Kim

We investigate the multiplicity of radially symmetric solutions for the quasilinear elliptic equation of Kirchhoff type. This paper is devoted to the study of the L ∞ -bound of solutions to the problem above by applying De Giorgi’s iteration method and the localization method. Employing this, we provide the existence of multiple small energy radially symmetric solutions whose L ∞ -norms converge to zero. We utilize the modified functional method and the dual fountain theorem as the main tools.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1792
Author(s):  
Yun-Ho Kim

We are concerned with the following elliptic equations: (−Δ)psv+V(x)|v|p−2v=λa(x)|v|r−2v+g(x,v)inRN, where (−Δ)ps is the fractional p-Laplacian operator with 0<s<1<r<p<+∞, sp<N, the potential function V:RN→(0,∞) is a continuous potential function, and g:RN×R→R satisfies a Carathéodory condition. By employing the mountain pass theorem and a variant of Ekeland’s variational principle as the major tools, we show that the problem above admits at least two distinct non-trivial solutions for the case of a combined effect of concave–convex nonlinearities. Moreover, we present a result on the existence of multiple solutions to the given problem by utilizing the well-known fountain theorem.


2017 ◽  
Vol 60 (4) ◽  
pp. 1003-1020 ◽  
Author(s):  
Hongxue Song ◽  
Caisheng Chen

AbstractThis paper deals with the class of Schrödinger–Kirchhoff-type biharmonic problemswhere Δ2 denotes the biharmonic operator, and f ∈ C(ℝN × ℝ, ℝ) satisfies the Ambrosetti–Rabinowitz-type conditions. Under appropriate assumptions on V and f, the existence of infinitely many solutions is proved by using the symmetric mountain pass theorem.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Lizhen Chen ◽  
Anran Li ◽  
Chongqing Wei

We investigate a class of fractional Schrödinger-Poisson system via variational methods. By using symmetric mountain pass theorem, we prove the existence of multiple solutions. Moreover, by using dual fountain theorem, we prove the above system has a sequence of negative energy solutions, and the corresponding energy values tend to 0. These results extend some known results in previous papers.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1393
Author(s):  
Weichun Bu ◽  
Tianqing An ◽  
José Vanteler da C. Sousa ◽  
Yongzhen Yun

In this article, we first obtain an embedding result for the Sobolev spaces with variable-order, and then we consider the following Schrödinger–Kirchhoff type equations a+b∫Ω×Ω|ξ(x)−ξ(y)|p|x−y|N+ps(x,y)dxdyp−1(−Δ)ps(·)ξ+λV(x)|ξ|p−2ξ=f(x,ξ),x∈Ω,ξ=0,x∈∂Ω, where Ω is a bounded Lipschitz domain in RN, 1<p<+∞, a,b>0 are constants, s(·):RN×RN→(0,1) is a continuous and symmetric function with N>s(x,y)p for all (x,y)∈Ω×Ω, λ>0 is a parameter, (−Δ)ps(·) is a fractional p-Laplace operator with variable-order, V(x):Ω→R+ is a potential function, and f(x,ξ):Ω×RN→R is a continuous nonlinearity function. Assuming that V and f satisfy some reasonable hypotheses, we obtain the existence of infinitely many solutions for the above problem by using the fountain theorem and symmetric mountain pass theorem without the Ambrosetti–Rabinowitz ((AR) for short) condition.


2018 ◽  
Vol 61 (4) ◽  
pp. 943-959 ◽  
Author(s):  
Leszek Gasiński ◽  
Nikolaos S. Papageorgiou

AbstractWe consider a nonlinear Robin problem driven by a non-homogeneous differential operator plus an indefinite potential term. The reaction function is Carathéodory with arbitrary growth near±∞. We assume that it is odd and exhibits a concave term near zero. Using a variant of the symmetric mountain pass theorem, we establish the existence of a sequence of distinct nodal solutions which converge to zero.


2015 ◽  
Vol 4 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Ziheng Zhang ◽  
Rong Yuan

AbstractIn this paper we are concerned with the existence of infinitely-many solutions for fractional Hamiltonian systems of the form ${\,}_tD^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}u(t))+L(t)u(t)=\nabla W(t,u(t))$, where ${\alpha \in (\frac{1}{2},1)}$, ${t\in \mathbb {R}}$, ${u\in \mathbb {R}^n}$, ${L\in C(\mathbb {R},\mathbb {R}^{n^2})}$ is a symmetric and positive definite matrix for all ${t\in \mathbb {R}}$, ${W\in C^1(\mathbb {R}\times \mathbb {R}^n,\mathbb {R})}$ and ${\nabla W(t,u)}$ is the gradient of ${W(t,u)}$ at u. The novelty of this paper is that, assuming L(t) is bounded in the sense that there are constants ${0&lt;\tau _1&lt;\tau _2&lt; \infty }$ such that ${\tau _1 |u|^2\le (L(t)u,u)\le \tau _2 |u|^2}$ for all ${(t,u)\in \mathbb {R}\times \mathbb {R}^n}$ and ${W(t,u)}$ is of the form ${({a(t)}/({p+1}))|u|^{p+1}}$ such that ${a\in L^{\infty }(\mathbb {R},\mathbb {R})}$ can change its sign and ${0&lt;p&lt;1}$ is a constant, we show that the above fractional Hamiltonian systems possess infinitely-many solutions. The proof is based on the symmetric mountain pass theorem. Recent results in the literature are generalized and significantly improved.


2020 ◽  
Vol 6 (1) ◽  
pp. 30
Author(s):  
Hassan Belaouidel ◽  
Anass Ourraoui ◽  
Najib Tsouli

This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving \(p(x)\)-Laplace type equation, namely $$\left\{\begin{array}{lll}-\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)&\text{in}&\Omega,\\n\cdot a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u +b(x)|u|^{p(x)-2}u=g(x,u) &\text{on}&\partial\Omega.\end{array}\right.$$ Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.


Sign in / Sign up

Export Citation Format

Share Document