scholarly journals Serious Solutions for Unsteady Axisymmetric Flow over a Rotating Stretchable Disk with Deceleration

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 96 ◽  
Author(s):  
Sadiq

In this article, the author has examined the unsteady flow over a rotating stretchable disk with deceleration. The highly nonlinear partial differential equations of viscous fluid are simplified by existing similarity transformation. Reduced nonlinear ordinary differential equations are solved by homotopy analysis method (HAM). The convergence of HAM solutions is also obtained. A comparison table between analytical solutions and numerical solutions is also presented. Finally, the results for useful parameters, i.e., disk stretching parameters and unsteadiness parameters, are found.

2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shaheed N. Huseen ◽  
Said R. Grace

A modifiedq-homotopy analysis method (mq-HAM) was proposed for solvingnth-order nonlinear differential equations. This method improves the convergence of the series solution in thenHAM which was proposed in (see Hassan and El-Tawil 2011, 2012). The proposed method provides an approximate solution by rewriting thenth-order nonlinear differential equation in the form ofnfirst-order differential equations. The solution of thesendifferential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.


2010 ◽  
Vol 65 (10) ◽  
pp. 829-843 ◽  
Author(s):  
Tariq Javed ◽  
Iftikhar Ahmad ◽  
Zaheer Abbas ◽  
Tasawar Hayat

This investigation deals with the boundary layer flow of a micropolar fluid over a stretching surface. The flow is considered in a rotating frame of reference. The governing nonlinear partial differential equations are reduced to coupled nonlinear ordinary differential equations. The set of similarity equations has been solved analytically employing the homotopy analysis method (HAM). The series solutions are given for velocity and microrotation, and the convergence of these solutions are explicitly discussed. Attention has been focused to the variations of the emerging parameters on the velocity and microrotation are discussed through graphs.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Fatima Riaz

An investigation has been made to study the off-centered stagnation flow of a couple stress fluid over a rotating disk. The model developed for the governing problem in the form of partial differential equations has been converted to ordinary differential equations with the use of suitable similarity transformation. The analytical approximation has been made with the most promising analytical approach, homotopy analysis method (HAM). The convergence region of the obtained solution is determined and plotted. The effects of couple stress and nondimensional parameters have been observed on the flows of couple stress fluid. Also comparison has been made with the Newtonian fluid as the special case of considered problem.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
S. S. Motsa ◽  
F. G. Awad ◽  
Z. G. Makukula ◽  
P. Sibanda

The spectral homotopy analysis method is extended to solutions of systems of nonlinear partial differential equations. The SHAM has previously been successfully used to find solutions of nonlinear ordinary differential equations. We solve the nonlinear system of partial differential equations that model the unsteady nonlinear convective flow caused by an impulsively stretching sheet. The numerical results generated using the spectral homotopy analysis method were compared with those found using the spectral quasilinearisation method (SQLM) and the two results were in good agreement.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 635-642 ◽  
Author(s):  
Tasawar Hayat ◽  
Ambreen Safdar ◽  
Muhammad Awais ◽  
Awatif A. Hendi

The three-dimensional unsteady flow induced in a second-grade fluid over a stretching surface has been investigated. Nonlinear partial differential equations are reduced into a system of ordinary differential equations by using the similarity transformations. The homotopy analysis method (HAM) has been implemented for the series solutions. Graphs are displayed for the effects of different parameters on the velocity field.


Sign in / Sign up

Export Citation Format

Share Document