scholarly journals General Solutions for Descriptor Systems of Coupled Generalized Sylvester Matrix Fractional Differential Equations via Canonical Forms

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 283 ◽  
Author(s):  
Kanjanaporn Tansri ◽  
Pattrawut Chansangiam

We investigate a descriptor system of coupled generalized Sylvester matrix fractional differential equations in both non-homogeneous and homogeneous cases. All fractional derivatives considered here are taken in Caputo’s sense. We explain a 4-step procedure to solve the descriptor system, consisting of vectorization, a matrix canonical form concerning ranks, and matrix partitioning. The procedure aims to reduce the descriptor system to a descriptor system of fractional differential equations. We also impose a condition on coefficient matrices, related to the symmetry of the solution for descriptor systems. It follows that an explicit form of its general solution is given in terms of matrix power series concerning Mittag–Leffler functions. The main system includes certain systems of coupled matrix/vector differential equations, and single matrix differential equations as special cases. In particular, we obtain an alternative procedure to solve linear continuous-time descriptor systems via a matrix canonical form.

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 701 ◽  
Author(s):  
Suphawat Asawasamrit ◽  
Sotiris Ntouyas ◽  
Jessada Tariboon ◽  
Woraphak Nithiarayaphaks

This paper studies the existence and uniqueness of solutions for a new coupled system of nonlinear sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions, which include as special cases the well-known symmetric boundary conditions. Banach’s contraction principle, Leray–Schauder’s alternative, and Krasnoselskii’s fixed-point theorem were used to derive the desired results, which are well-illustrated with examples.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq A. Aljaaidi ◽  
Deepak B. Pachpatte ◽  
Thabet Abdeljawad ◽  
Mohammed S. Abdo ◽  
Mohammed A. Almalahi ◽  
...  

AbstractThe theory of fractional integral inequalities plays an intrinsic role in approximation theory also it has been a key in establishing the uniqueness of solutions for some fractional differential equations. Fractional calculus has been found to be the best for modeling physical and engineering processes. More precisely, the proportional fractional operators are one of the recent important notions of fractional calculus. Our aim in this research paper is developing some novel ways of fractional integral Hermite–Hadamard inequalities in the frame of a proportional fractional integral with respect to another strictly increasing continuous function. The considered fractional integral is applied to establish some new fractional integral Hermite–Hadamard-type inequalities. Moreover, we present some special cases throughout discussing this work.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (2) ◽  
pp. 208-221
Author(s):  
Abdelatif Boutiara ◽  
◽  
Maamar Benbachir ◽  
Kaddour Guerbati ◽  
◽  
...  

The purpose of this paper is to investigate the existence and uniqueness of solutions for a new class of nonlinear fractional differential equations involving Hilfer fractional operator with fractional integral boundary conditions. Our analysis relies on classical fixed point theorems and the Boyd-Wong nonlinear contraction. At the end, an illustrative example is presented. The boundary conditions introduced in this work are of quite general nature and can be reduce to many special cases by fixing the parameters involved in the conditions.


2016 ◽  
Vol 14 (1) ◽  
pp. 723-735 ◽  
Author(s):  
Mohammed H. Aqlan ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Juan J. Nieto

AbstractWe develop the existence theory for sequential fractional differential equations involving Liouville-Caputo fractional derivative equipped with anti-periodic type (non-separated) and nonlocal integral boundary conditions. Several existence criteria depending on the nonlinearity involved in the problems are presented by means of a variety of tools of the fixed point theory. The applicability of the results is shown with the aid of examples. Our results are not only new in the given configuration but also yield some new special cases for specific choices of parameters involved in the problems.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 360 ◽  
Author(s):  
Dumitru Baleanu ◽  
Arran Fernandez ◽  
Ali Akgül

The Caputo fractional derivative has been one of the most useful operators for modelling non-local behaviours by fractional differential equations. It is defined, for a differentiable function f ( t ) , by a fractional integral operator applied to the derivative f ′ ( t ) . We define a new fractional operator by substituting for this f ′ ( t ) a more general proportional derivative. This new operator can also be written as a Riemann–Liouville integral of a proportional derivative, or in some important special cases as a linear combination of a Riemann–Liouville integral and a Caputo derivative. We then conduct some analysis of the new definition: constructing its inverse operator and Laplace transform, solving some fractional differential equations using it, and linking it with a recently described bivariate Mittag-Leffler function.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Maryam Aleem ◽  
Mujeeb Ur Rehman ◽  
Jehad Alzabut ◽  
Sina Etemad ◽  
Shahram Rezapour

AbstractIn this work, we study the existence, uniqueness, and continuous dependence of solutions for a class of fractional differential equations by using a generalized Riesz fractional operator. One can view the results of this work as a refinement for the existence theory of fractional differential equations with Riemann–Liouville, Caputo, and classical Riesz derivative. Some special cases can be derived to obtain corresponding existence results for fractional differential equations. We provide an illustrated example for the unique solution of our main result.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
B. B. Jaimini ◽  
Manju Sharma ◽  
D. L. Suthar ◽  
S. D. Purohit

In this paper, we have studied a unified multi-index Mittag–Leffler function of several variables. An integral operator involving this Mittag–Leffler function is defined, and then, certain properties of the operator are established. The fractional differential equations involving the multi-index Mittag–Leffler function of several variables are also solved. Our results are very general, and these unify many known results. Some of the results are concluded at the end of the paper as special cases of our primary results.


2019 ◽  
Vol 3 (1) ◽  
pp. 2-11 ◽  
Author(s):  
F. Gómez ◽  
J. Bernal ◽  
J. Rosales ◽  
T. Cordova

Abstract Using the fractional calculus approach, we present the Laplace analysis of an equivalent electrical circuit for a multilayered system, which includes distributed elements of the Cole model type. The Bode graphs are obtained from the numerical simulation of the corresponding transfer functions using arbitrary electrical parameters in order to illustrate the methodology. A numerical Laplace transform is used with respect to the simulation of the fractional differential equations. From the results shown in the analysis, we obtain the formula for the equivalent electrical circuit of a simple spectrum, such as that generated by a real sample of blood tissue, and the corresponding Nyquist diagrams. In addition to maintaining consistency in adjusted electrical parameters, the advantage of using fractional differential equations in the study of the impedance spectra is made clear in the analysis used to determine a compact formula for the equivalent electrical circuit, which includes the Cole model and a simple RC model as special cases.


Sign in / Sign up

Export Citation Format

Share Document