scholarly journals Switching Perfect Control Algorithm

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 816 ◽  
Author(s):  
Marek Krok ◽  
Wojciech P. Hunek ◽  
Tomasz Feliks

The application of the switching control framework to the perfect control algorithm is presented in this paper. Employing the nonunique matrix inverses, the different closed-loop properties are obtained and further enhanced with possible switching methodology implementation. Simulation examples performed in the MATLAB/Simulink environment clearly show that the new framework can lead to benefits in terms of the control energy, speed, and robustness of the perfect control law. The possibility of transferring the new obtained results to the symmetrical nonlinear plants seems to be immediate.

2019 ◽  
Vol 292 ◽  
pp. 01010
Author(s):  
Mihailo Lazarević ◽  
Nikola Živković ◽  
Darko Radojević

The paper designs an appropriate iterative learning control (ILC) algorithm based on the trajectory characteristics of upper exosk el eton robotic system. The procedure of mathematical modelling of an exoskeleton system for rehabilitation is given and synthesis of a control law with two loops. First (inner) loop represents exact linearization of a given system, and the second (outer) loop is synthesis of a iterative learning control law which consists of two loops, open and closed loop. In open loop ILC sgnPDD2 is applied, while in feedback classical PD control law is used. Finally, a simulation example is presented to illustrate the feasibility and effectiveness of the proposed advanced open-closed iterative learning control scheme.


2014 ◽  
Vol 494-495 ◽  
pp. 1084-1087
Author(s):  
Fu Cheng Cao ◽  
Hai Xin Sun ◽  
Li Rong Wang

An iterative learning impedance control algorithm is presented to control a gait rehabilitation robot. According to the circumstances of the patient, the appropriate rehabilitation target impedance parameters are set. With the adoption of iterative learning control law, the impedance error in the closed loop is guaranteed to converge to zero and the iterative trajectories follow the desired trajectories over the entire operation interval. The effectiveness of the proposed method is shown through numerical simulation results.


2021 ◽  
Vol 11 (16) ◽  
pp. 7466
Author(s):  
Marek Krok ◽  
Wojciech P. Hunek ◽  
Paweł Majewski

In this paper, a new approach to the continuous-time perfect control algorithm is given. Focusing on the output derivative, it is shown that the discussed control law can effectively be implemented in terms of state-feedback scenarios. Moreover, the application of nonunique matrix inverses is also taken into consideration during the perfect control design process. Simulation examples given within this work allow us to showcase the main properties obtained for continuous-time perfect control closed-loop plants.


2004 ◽  
Vol 127 (2) ◽  
pp. 218-229 ◽  
Author(s):  
Sergio M. Savaresi ◽  
Enrico Silani ◽  
Sergio Bittanti

The problem considered in this paper is the design and analysis of control strategies for semiactive suspensions in road vehicles. The most commonly used control framework is the well-known Sky–Hook (SH) damping. Two-state or linear approximation of the SH concept are typically implemented. The goal of this paper is to analyze the optimality of SH-based control algorithms, and to propose an innovative control strategy, named Acceleration-Driven-Damper (ADD) control. It is shown that ADD is optimal in the sense that it minimizes the vertical body acceleration (comfort objective) when no road-preview is available. This control strategy is extremely simple; it requires the same sensors of the SH algorithms, and a simple two-state controllable damper. In order to assess and to compare the closed-loop performance of the SH and ADD control strategies, both a theoretical and a numerical analysis of performance are proposed.


Robotica ◽  
2011 ◽  
Vol 30 (4) ◽  
pp. 517-535 ◽  
Author(s):  
Maciej Michałek ◽  
Krzysztof Kozłowski

SUMMARYThe paper introduces a novel general feedback control framework, which allows applying the motion controllers originally dedicated for the unicycle model to the motion task realization for the car-like kinematics. The concept is formulated for two practically meaningful motorizations: with a front-wheel driven and with a rear-wheel driven. All the three possible steering angle domains for car-like robots—limited and unlimited ones—are treated. Description of the method is complemented by the formal stability analysis of the closed-loop error dynamics. The effectiveness of the method and its limitations have been illustrated by numerous simulations conducted for the three main control tasks, namely, for trajectory tracking, path following, and set-point regulation.


1987 ◽  
Vol 109 (4) ◽  
pp. 320-327 ◽  
Author(s):  
C. K. Kao ◽  
A. Sinha ◽  
A. K. Mahalanabis

A digital state feedback control algorithm has been developed to obtain the near-minimum-time trajectory for the end-effector of a robot manipulator. In this algorithm, the poles of the linearized closed loop system are judiciously placed in the Z-plane to permit near-minimum-time response without violating the constraints on the actuator torques. The validity of this algorithm has been established using numerical simulations. A three-link manipulator is chosen for this purpose and the results are discussed for three different combinations of initial and final states.


Robotica ◽  
2016 ◽  
Vol 35 (8) ◽  
pp. 1732-1746 ◽  
Author(s):  
Loris Roveda ◽  
Nicola Pedrocchi ◽  
Federico Vicentini ◽  
Lorenzo Molinari Tosatti

SUMMARYLight-weight manipulators are used in industrial tasks mounted on mobile platforms to improve flexibility. However, such mountings introduce compliance affecting the tasks. This work deals with such scenarios by designing a controller that also takes into account compliant environments. The controller allows the tracking of a target force using the estimation of the environment stiffness (EKF) and the estimation of the base position (KF), compensating the robot base deformation. The closed-loop stability has been analyzed. Observers and the control law have been validated in experiments. An assembly task is considered with a standard industrial non-actuated mobile platform. Control laws with and without base compensation are compared.


Author(s):  
Mohamed M. Alhneaish ◽  
Mohamed L. Shaltout ◽  
Sayed M. Metwalli

An economic model predictive control framework is presented in this study for an integrated wind turbine and flywheel energy storage system. The control objective is to smooth wind power output and mitigate tower fatigue load. The optimal control problem within the model predictive control framework has been formulated as a convex optimal control problem with linear dynamics and convex constraints that can be solved globally. The performance of the proposed control algorithm is compared to that of a standard wind turbine controller. The effect of the proposed control actions on the fatigue loads acting on the tower and blades is studied. The simulation results, with various wind scenarios, showed the ability of the proposed control algorithm to achieve the aforementioned objectives in terms of smoothing output power and mitigating tower fatigue load at the cost of a minimal reduction of the wind energy harvested.


Sign in / Sign up

Export Citation Format

Share Document