scholarly journals An Improved Augmented Algorithm for Direction Error in XPNAV

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1059
Author(s):  
Xiaobin Ren ◽  
Guigen Nie ◽  
Lianyan Li

Recently, X-ray pulsar-based navigation (XPNAV) as a significant navigation method has been widely used in deep space exploration. However, the accuracy of XPNAV is limited to the existence of the pulsar direction error. To improve the performance of XPNAV, we have proposed a novel algorithm named “the modified augmented state extended Kalman filter” (MASEKF). The algorithm considers the high-order terms of direction error and then adds a more precise direction error into state equation and measurement equation. In the simulation, by comparing the performance of MASEKF, EKF, and ASEKF at the same time, it is found that MASEKF has better performance in the accuracy and stability, and the results also demonstrate that MASEKF algorithm has faster convergence speed. This paper provides a strong reference for other improvements of algorithms towards direction error. The purpose of this study is to establish MASEKF and add the direction error into the measurement equation and the state equation, so as to realize the coordination and symmetry of the algorithm.

2010 ◽  
Vol 46 (11) ◽  
pp. 1409-1417 ◽  
Author(s):  
Jing Liu ◽  
Jie Ma ◽  
Jin-wen Tian ◽  
Zhi-wei Kang ◽  
Paul White

2015 ◽  
Vol 41 ◽  
pp. 144-150 ◽  
Author(s):  
Jin Liu ◽  
Jian-cheng Fang ◽  
Zhao-hua Yang ◽  
Zhi-wei Kang ◽  
Jin Wu

Author(s):  
James F. Soeder ◽  
Anne Mcnelis ◽  
Raymond Beach ◽  
Nancy McNelis ◽  
Timothy Dever ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. N. Chung ◽  
Jun Dong ◽  
Hao Wang ◽  
S. R. Darr ◽  
J. W. Hartwig

AbstractThe extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA’s biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adriana Salatino ◽  
Claudio Iacono ◽  
Roberto Gammeri ◽  
Stefano T. Chiadò ◽  
Julien Lambert ◽  
...  

AbstractOrienting attention in the space around us is a fundamental prerequisite for willed actions. On Earth, at 1 g, orienting attention requires the integration of vestibular signals and vision, although the specific vestibular contribution to voluntary and automatic components of visuospatial attention remains largely unknown. Here, we show that unweighting of the otolith organ in zero gravity during parabolic flight, selectively enhances stimulus-driven capture of automatic visuospatial attention, while weakening voluntary maintenance of covert attention. These findings, besides advancing our comprehension of the basic influence of the vestibular function on voluntary and automatic components of visuospatial attention, may have operational implications for the identification of effective countermeasures to be applied in forthcoming human deep space exploration and habitation, and on Earth, for patients’ rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document