quenching efficiency
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 46)

H-INDEX

17
(FIVE YEARS 5)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 35
Author(s):  
Abhishek Shibu ◽  
Camilla Middleton ◽  
Carly O. Kwiatkowski ◽  
Meesha Kaushal ◽  
Jonathan H. Gillen ◽  
...  

The study of excited-state energy diffusion has had an important impact in the development and optimization of organic electronics. For instance, optimizing excited-state energy migration in the photoactive layer in an organic solar cell device has been shown to yield efficient solar energy conversion. Despite the crucial role that energy migration plays in molecular electronic device physics, there is still a great deal to be explored to establish how molecular orientation impacts energy diffusion mechanisms. In this work, we have synthesized a new library of solution-processable, Zn (alkoxycarbonyl)phenylporphyrins containing butyl (ZnTCB4PP), hexyl (ZnTCH4PP), 2-ethylhexyl (ZnTCEH4PP), and octyl (ZnTCO4PP) alkoxycarbonyl groups. We establish that, by varying the length of the peripheral alkyl chains on the metalloporphyrin macrocycle, preferential orientation and molecular self-assembly is observed in solution-processed thin films. The resultant arrangement of molecules consequently affects the electronic and photophysical characteristics of the metalloporphyrin thin films. The various molecular arrangements in the porphyrin thin films and their resultant impact were determined using UV-Vis absorption spectroscopy, steady-state and time-resolved fluorescence emission lifetimes, and X-ray diffraction in thin films. The films were doped with C60 quencher molecules and the change in fluorescence was measured to derive a relative quenching efficiency. Using emission decay, relative quenching efficiency, and dopant volume fraction as input, insights on exciton diffusion coefficient and exciton diffusion lengths were obtained from a Monte Carlo simulation. The octyl derivative (ZnTCO4PP) showed the strongest relative fluorescence quenching and, therefore, the highest exciton diffusion coefficient (5.29 × 10−3 cm2 s−1) and longest exciton diffusion length (~81 nm). The octyl derivative also showed the strongest out-of-plane stacking among the metalloporphyrins studied. This work demonstrates how molecular self-assembly can be used to modulate and direct exciton diffusion in solution-processable metalloporphyrin thin films engineered for optoelectronic and photonic applications.


2021 ◽  
Author(s):  
Tommaso Marchesi D’Alvise ◽  
Sruthi Sunder ◽  
Roger Hasler ◽  
Julia Moser ◽  
Wolfgang Knoll ◽  
...  

The resource intensive and environmentally unfriendly synthesis, recycling and disposal of today’s plastics has sparked interest in greener polymer processing. Bioderived polymers are one of many current areas of research that show promise for a sustainable future. One bioderived polymer that has been in the spotlight for the past decade due to its unique properties is polydopamine (PDA). Its ability to adhere to virtually any surface showing high stability in a wide pH range from 2-10 and in several organic solvents makes it a suitable candidate for several applications ranging from medical devices, coatings to biosensing applications. However, its strong and broad light absorption limits many applications that rely on transparent material, moreover fluorescence applications are limited by the high quenching efficiency of PDA. Therefore, new bioderived polymers that share similar features as PDA without fluorescent quenching are highly desirable. In this study, the electropolymerization of a bioderived analogue of dopamine, 3-amino-L-tyrosine (ALT) is demonstrated. The properties of the resultant polymer, poly-amino-L-tyrosine (p-ALT), exhibit several characteristics complementary to or even exceeding those of PDA and of its analog, poly-norepinephrine (p-NorEp), rendering p-ALT attractive for the development of sensors and photoactive devices. Cyclic voltammetry, spectroelectrochemistry and electrochemical quartz crystal microbalance have been applied to study the electrodeposition of this material and the resulting polymeric films have been compared to PDA and p-NorEp. Impedance spectroscopy revealed increased ions permeability of p-ALT with respect PDA and p-NorEp. Moreover reduced fluorescence quenching of p-ALT film was achieved supporting its application as coating for biosensors, organic semiconductors and new nanocomposite materials.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6847
Author(s):  
Li-Li Xu ◽  
Qiu-Feng Zhang ◽  
Dong Wang ◽  
Guang-Wei Wu ◽  
Hong Cai

Fluorescent metal–organic frameworks (MOFs) are ideal materials for sensors because of their adjustable pore size and functional groups, which provide them with favorable metal ion selective recognition. In this paper, a new cadmium-based MOF was synthesized using Cd(NO3)2·4H2O and 3,3′,5,5′-biphenyltetracarboxylic acid by solvothermal method. CdBPTC owned three types of channels with dimensions of approximately 8.4 × 8.3 Å, 6.0 × 5.2 Å, 9.7 × 8.4 Å along a, b, and c axis, respectively. This MOF has high selectivity to ferric ions and shows excellent anti-inference ability toward many other cations. The results indicate that the fluorescence quenching efficiency of CdBPTC is close to 100% when the concentration of Fe3+ reaches 1.0 × 10−3 mol·L−1. Moreover, the luminescent intensity at 427 nm presents a linear relationship at a concentration range of 2.0 × 10−4~7.0 × 10−4 mol·L−1, which can be quantitatively expressed by the linear Stern–Volmer equation I0/I = 8489 [Fe3+] − 0.1400, which is comparable to the previously reported better-performing materials. Competitive energy absorption and ion exchange may be responsible for the variation in fluorescence intensity of CdBPTC in different Fe3+ concentrations.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1414
Author(s):  
Adrian F. Tuck

The increase of the vertical scaling exponent of the horizontal wind Hv(s) with altitude from the surface of the Pacific Ocean to 13 km altitude, as observed by GPS dropsondes, is investigated. An explanation is offered in terms of the decrease of gravitational force and decrease of quenching efficiency of excited photofragments from ozone photodissociation with increasing altitude (decreasing pressure). Turbulent scaling is examined in both the vertical from dropsondes and horizontal from aircraft observations; the scaling exponents H for both wind speed and temperature in both coordinates are positively correlated with traditional measures of jet stream strength. Interpretation of the results indicates that persistence of molecular velocity after collision induces symmetry breaking emergence of hydrodynamic flow via the mechanism first modelled by Alder and Wainwright, enabled by the Gibbs free energy carried by the highest speed molecules. It is suggested that the combined effects have the potential to address the cold bias in numerical models of the global atmosphere.


2021 ◽  
Author(s):  
Deepika Garg ◽  
Heena Rekhi ◽  
Harpreet Kaur ◽  
Karam Jeet Singh ◽  
Ashok Kumar Malik

Abstract Multifunctional Cu (II)-based Metal Organic Framework (MOF) [Cu3(BTC)2] has been synthesized by a facile electrochemical method. Crystallographic and morphological characterizations of synthesized MOF have been done using Powder X-ray Diffractometer and Scanning Electron Microscope (SEM), respectively, whereas Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-ray Spectroscopy (EDS), UV-Vis Absorption Spectroscopy and Energy Resolved Luminescence Spectroscopic studies have been used for the detailed qualitative, quantitative as well as optical analyses. Sharp PXRD peaks indicate the formation of highly crystalline MOF with face centered cubic (fcc) structure. Flakes (average length = 0.71µm and width = 0.10 µm) and rods (average aspect ratio = ((0.1:8.3) µm) like morphologies have been observed in SEM micrographs. The presence of C, O and Cu has been confirmed by EDS analysis. Photocatalytic activity potential of the synthesized MOF has been tested using methylene blue dye (MB) as a test contaminant in aqueous media under sunlight irradiation. Selective and sensitive fluorescent sensing of different Nitroaromatic compounds (NACs) like 4-Nitroaniline (4-NA), 2-Nitroaniline (2-NA), 3-Nitroaniline (3-NA), 4-Nitrotoulene (4-NT), 2,4-Dinitrotoulene (2,4-DNT), 1,3-Dinitrobenzene (1,3-DNB), 2,6-Dinitrotoulene (2,6-DNT) has been done by exploring the photoluminescent behaviour of chemically stable Cu3(BTC)2. Synthesized MOF is extremely sensitive towards 4-NA, which is having PL quenching efficiency of 82.61% with highest quenching rate till reported. Indeed, a large quenching coefficient KSV = 34.02 x 10− 7 M− 1 and correlation coefficient R2 = 0.9962 in KSV plot have been elucidated with limit of detection (LOD) = 0.7544 ppb. The possible ways of luminescence quenching are successfully explained by the combination of Photoinduced Electron Transfer (PET) and Resonance Energy Transfer (RET) mechanisms. Additionally, the Density Functional Theory (DFT) calculations have been employed to support the experimental results. Cu3(BTC)2 fully demonstrates the power of a multi component MOF, which provides a feasible pathway for the design of novel material towards fast responding luminescence sensing and photocatalytic degradation of pollutants.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6774
Author(s):  
Dariusz Smugala ◽  
Michal Bonk

This paper presents an experimentally verified approach to deriving switching arc energy limitations for low-voltage (LV) circuit breakers (CBs). Air-insulated contactors equipped with additional vacuum-insulated (VI) arcing contacts were tested for AC and DC current interruption efficiency, respectively. In the study, the contact arrangements of reed relay VI contact switches of low current breaking capacity combined with air-insulated contactors were examined. Tests were performed on selected LV CBs inductively loaded for LV power network rated voltages. A comparative analysis of the arc energy resulting from various arc time durations recorded during the switching-off operation was performed. Using a variety of either basic CB air-insulated contact systems or combined contact systems, a practical assessment of the proposed idea for enhancing the arc quenching efficiency was undertaken. As a result of the implementation of the proposed idea, the arc burning duration time was indicated as being hundreds of times shorter. In most cases, a complete arc reduction was achieved. Moreover, the resulting arc energy dissipation during the breaking operation was substantially minimized. Consequently, a significant increase in the total current breaking capacity of the tested CBs was achieved.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5965
Author(s):  
Xiaoxiao Chen ◽  
Yang Liu ◽  
Pu Li ◽  
Yichen Xing ◽  
Chaobiao Huang

A dual recognition system with a fluorescence quenching of quantum dots (QDs) and specific recognition of molecularly imprinted polymer (MIP) for the detection of chloramphenicol (CAP) was constructed. MIP@SiO2@QDs was prepared by reverse microemulsion method with 3-aminopropyltriethoxysilane (APTS), tetraethyl orthosilicate (TEOS) and QDs being used as the functional monomer, cross-linker and signal sources, respectively. MIP can specifically recognize CAP, and the fluorescence of QDs can be quenched by CAP due to the photo-induced electron transfer reaction between CAP and QDs. Thus, a method for the trace detection of CAP based on MIP@SiO2@QDs fluorescence quenching was established. The fluorescence quenching efficiency of MIP@SiO2@QDs displayed a desirable linear response to the concentration of CAP in the range of 1.00~4.00 × 102 μmol × L−1, and the limit of detection was 0.35 μmol × L−1 (3σ, n = 9). Importantly, MIP@SiO2@QDs presented good detection selectivity owing to specific recognition for CAP, and was successfully applied to quantify CAP in lake water with the recovery ranging 102.0~104.0%, suggesting this method has the promising potential for the on-site detection of CAP in environmental waters.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1100
Author(s):  
Muhammad Zulfajri ◽  
Sri Sudewi ◽  
Sri Ismulyati ◽  
Akhtar Rasool ◽  
Muhammad Adlim ◽  
...  

Carbon dots (CDs) have generated much interest because of their significant fluorescence (FL) properties, extraordinary photophysical attributes, and long-term colloidal stability. CDs have been regarded as a prospective carbon nanomaterial for various sensing applications because of their low toxicity, strong and broad optical absorption, high chemical stability, rapid transfer properties, and easy modification. To improve their functionality, CD/polymer composites have been developed by integrating polymers into CDs. CD/polymer composites have diversified because of their easy preparation and applications in sensing, optoelectronics, semiconductors, molecular delivery, and various commercial fields. Many review articles are available regarding the preparation and applications of CDs. Some review articles describing the production and multiple applications of the composites are available. However, no such article has focused on the types of precursors, optical properties, coating characteristics, and specific sensing applications of CD/polymer composites. This review aimed to highlight and summarize the current progress of CD/polymer composites in the last five years (2017–2021). First, we overview the precursors used for deriving CDs and CD/polymer composites, synthesis methods for preparing CDs and CD/polymer composites, and the optical properties (absorbance, FL, emission color, and quantum yield) and coating characteristics of the composites. Most carbon and polymer precursors were dominated by synthetic precursors, with citric acid and polyvinyl alcohol widely utilized as carbon and polymer precursors, respectively. Hydrothermal treatment for CDs and interfacial polymerization for CDs/polymers were frequently performed. The optical properties of CDs and CD/polymer composites were almost identical, denoting that the optical characters of CDs were well-maintained in the composites. Then, the chemical, biological, and physical sensing applications of CD/polymer composites are categorized and discussed. The CD/polymer composites showed good performance as chemical, biological, and physical sensors for numerous targets based on FL quenching efficiency. Finally, remaining challenges and future perspectives for CD/polymer composites are provided.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3046
Author(s):  
Lianfeng Wu ◽  
Qin Jiang ◽  
Haifeng Lu ◽  
Shengyu Feng

Tetraphenylethylene (TPE), a typical luminogen with aggregation-induced emission (AIE) features, has been widely used to prepare AIE fluorescent materials. In this study, TPE-functionalized polydimethylsiloxane (n-TPE-AP-PDMS) was successfully synthesized by attaching TPE to polydimethylsiloxane via aza-Michael addition. The introduction of polydimethylsiloxane to TPE had no obvious effect on photophysical properties. Intriguingly, n-TPE-AP-PDMS exhibited two opposite fluorescence emission behaviors in different systems: aggregation-induced quenching (ACQ) behavior in a tetrahydrofuran/water mixture and typical AIE phenomenon in a tetrahydrofuran/hexane mixture. This unexpected transition from ACQ to AIE can be attributed to a twisted intramolecular charge-transfer effect and flexible aminopropyl polydimethylsiloxane. n-TPE-AP-PDMS was further used as a fluorescent probe to detect nitrobenzene and it showed high quenching efficiency. Moreover, the n-TPE-AP-PDMS film showed high reversibility so that the quenching efficiency remained constant after five cycles. This work can provide a deeper understanding of AIE behavior and guidance to develop a new AIE polymer for chemosensors with high performance.


Sign in / Sign up

Export Citation Format

Share Document