scholarly journals On Schwarzschild’s Interior Solution and Perfect Fluid Star Model

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1669
Author(s):  
Elisabetta Barletta ◽  
Sorin Dragomir ◽  
Francesco Esposito

We solve the boundary value problem for Einstein’s gravitational field equations in the presence of matter in the form of an incompressible perfect fluid of density ρ and pressure field p(r) located in a ball r≤r0. We find a 1-parameter family of time-independent and radially symmetric solutions ga,ρa,pa:−2m<a<a1 satisfying the boundary conditions g=gS and p=0 on r=r0, where gS is the exterior Schwarzschild solution (solving the gravitational field equations for a point mass M concentrated at r=0) and containing (for a=0) the interior Schwarzschild solution, i.e., the classical perfect fluid star model. We show that Schwarzschild’s requirement r0>9κM/(4c2) identifies the “physical” (i.e., such that pa(r)≥0 and pa(r) is bounded in 0≤r≤r0) solutions {pa:a∈U0} for some neighbourhood U0⊂(−2m,+∞) of a=0. For every star model {ga:a0<a<a1}, we compute the volume V(a) of the region r≤r0 in terms of abelian integrals of the first, second, and third kind in Legendre form.

2017 ◽  
Vol 32 (15) ◽  
pp. 1750080 ◽  
Author(s):  
Emre Dil

In this study, to investigate the very nature of quantum black holes, we try to relate three independent studies: (q, p)-deformed Fermi gas model, Verlinde’s entropic gravity proposal and Strominger’s quantum black holes obeying the deformed statistics. After summarizing Strominger’s extremal quantum black holes, we represent the thermostatistics of (q, p)-fermions to reach the deformed entropy of the (q, p)-deformed Fermi gas model. Since Strominger’s proposal claims that the quantum black holes obey deformed statistics, this motivates us to describe the statistics of quantum black holes with the (q, p)-deformed fermions. We then apply the Verlinde’s entropic gravity proposal to the entropy of the (q, p)-deformed Fermi gas model which gives the two-parameter deformed Einstein equations describing the gravitational field equations of the extremal quantum black holes obeying the deformed statistics. We finally relate the obtained results with the recent study on other modification of Einstein equations obtained from entropic quantum corrections in the literature.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
John D. Barrow

AbstractWe study the Einstein-aether theory in Weyl integrable geometry. The scalar field which defines the Weyl affine connection is introduced in the gravitational field equation. We end up with an Einstein-aether scalar field model where the interaction between the scalar field and the aether field has a geometric origin. The scalar field plays a significant role in the evolution of the gravitational field equations. We focus our study on the case of homogeneous and isotropic background spacetimes and study their dynamical evolution for various cosmological models.


Sign in / Sign up

Export Citation Format

Share Document