scholarly journals Influence of Mach Number of Main Flow on Film Cooling Characteristics under Supersonic Condition

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Bo Zhang ◽  
Yuan-Xiang Chen ◽  
Zhi-guo Wang ◽  
Ji-Quan Li ◽  
Hong-hu Ji

The flow and heat transfer characteristics of a film jet inclined to different supersonic situations with a varying Mach number of the main flow were numerically investigated. In supersonic situations, complicated waves are generated by the obstacle of the film jet. In this work, extra pressure is exerted onto the film jet, causing better film attachment to the wall. The strengthening of attachment decreases mixing between the main flow and film jet, causing better film cooling. We observed multi-interfacial layered structures caused by the film jet under the complicated effect of shock waves. At the interfaces of the film jet and shock waves, additional pressure is exerted on the film towards the wall. The pressure increases as the Mach number of the main flow increases and contributes to the increased adhesion of the gas film, which causes the cooling enhancement under a supersonic condition. In the vicinity of the film hole exit, a local low pressure region is formed under the influence of the supersonic main flow. An aerodynamic convergent–divergent state was formed in the film hole, devastating the state of supersonic congestion of the film hole and further enhancing the film cooling effect.

2005 ◽  
Vol 127 (5) ◽  
pp. 888-896 ◽  
Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Detached Eddy Simulation (DES) of a hydrodynamic and thermally developed turbulent flow is presented for a stationary duct with square ribs aligned normal to the main flow direction. The rib height to channel hydraulic diameter (e∕Dh) is 0.1, the rib pitch to rib height (P∕e) is 10 and the calculations have been carried out for a bulk Reynolds number of 20,000. DES calculations are carried out on a 963 grid, a 643 grid, and a 483 grid to study the effect of grid resolution. Based on the agreement with earlier LES computations, the 643 grid is observed to be suitable for the DES computation. DES and RANS calculations carried out on the 643 grid are compared to LES calculations on 963∕1283 grids and experimental measurements. The flow and heat transfer characteristics for the DES cases compare well with the LES results and the experiments. The average friction and the augmentation ratios are consistent with experimental results, predicting values within 10% of the measured quantities, at a cost lower than the LES calculations. RANS fails to capture some key features of the flow.


Author(s):  
Yiwen Ma ◽  
Haiwang Li ◽  
Meisong Yang ◽  
Min Wu ◽  
Huimin Zhou

Engine turbine blades operate at a high speed of rotation and are subjected to high temperature and pressure prevailing gas from the combustion chamber, making the working condition very harsh. In particular, the leading edge of the blade, which is directly subjected to high-temperature gas impacts, is the hottest part of the turbine. Therefore, it is of great importance to improve the protection of the blade leading edge and enhance the understanding of this part of the flow field and temperature field. This paper will focus on the phenomenon of wake deflection and study the film cooling characteristics of the turbine blade under rotating condition. The characteristics of pressure surface and suction surface of the blade are verified by numerical simulation. The contents cover the influence of the film hole diameter, pitch, blowing ratio, rotation number and the development process, the film cooling efficiency on the outflow of coolant film. The result shows that Coriolis force, centrifugal force and secondary flow induced by rotation will change the mainstream flow along the blade, which will lead to changes of pattern concerning the development of the film on the blade surface. In the process of wake development, deflection occurs in different directions at different positions, and the greater the rotation number is, the more obvious the degree of deflection will be. Studying the model with film holes on the leading edge of the blade, these phenomena can be observed along the downstream on the pressure and suction surfaces. Also, models with film holes independently set on the pressure and suction surfaces can be used as proof of these features. At the same time, this paper studies the flow and heat transfer characteristics of the leading-edge gas film under rotating condition and focuses on the influence of rotation on the outflow and the development processes of the wake. The gas film cooling models in rotating state of different film hole diameters and film hole radial spacing will also be compared to further understand the flow and heat transfer characteristics of film cooling on the leading edge of the blade.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Numerical predictions of a hydrodynamic and thermally developed turbulent flow are presented for a stationary duct with square ribs aligned normal to the main flow direction. The rib height to channel hydraulic diameter (e/Dh) is 0.1, the rib pitch to rib height (P/e) is 10 and the calculations have been carried out for a bulk Reynolds number of 20,000. Detached Eddy Simulation (DES) has been used to compute the flowfield and the heat transfer. DES calculations are carried out on a 963 grid, a 643 grid and a 483 grid to study the effect of grid resolution. Based on the agreement with earlier LES computations and experimental data the 643 grid is observed to be suitable for the DES computation. DES and RANS calculations carried out on the 643 grid are compared to LES calculations on 963/1283 grids and experimental measurements. The flow and heat transfer characteristics for the DES cases compare well with the LES results and the experiments. The average friction and the augmentation ratios are consistent with experimental results, predicting values within 15% of the measured quantities, at a cost lower than the LES calculations. RANS fails to capture some key features of the flow.


Sign in / Sign up

Export Citation Format

Share Document