scholarly journals Connected Fundamental Groups and Homotopy Contacts in Fibered Topological (C, R) Space

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 500
Author(s):  
Susmit Bagchi

The algebraic as well as geometric topological constructions of manifold embeddings and homotopy offer interesting insights about spaces and symmetry. This paper proposes the construction of 2-quasinormed variants of locally dense p-normed 2-spheres within a non-uniformly scalable quasinormed topological (C, R) space. The fibered space is dense and the 2-spheres are equivalent to the category of 3-dimensional manifolds or three-manifolds with simply connected boundary surfaces. However, the disjoint and proper embeddings of covering three-manifolds within the convex subspaces generates separations of p-normed 2-spheres. The 2-quasinormed variants of p-normed 2-spheres are compact and path-connected varieties within the dense space. The path-connection is further extended by introducing the concept of bi-connectedness, preserving Urysohn separation of closed subspaces. The local fundamental groups are constructed from the discrete variety of path-homotopies, which are interior to the respective 2-spheres. The simple connected boundaries of p-normed 2-spheres generate finite and countable sets of homotopy contacts of the fundamental groups. Interestingly, a compact fibre can prepare a homotopy loop in the fundamental group within the fibered topological (C, R) space. It is shown that the holomorphic condition is a requirement in the topological (C, R) space to preserve a convex path-component. However, the topological projections of p-normed 2-spheres on the disjoint holomorphic complex subspaces retain the path-connection property irrespective of the projective points on real subspace. The local fundamental groups of discrete-loop variety support the formation of a homotopically Hausdorff (C, R) space.

2000 ◽  
Vol 02 (01) ◽  
pp. 75-86 ◽  
Author(s):  
FUQUAN FANG ◽  
XIAOCHUN RONG

We prove a vanishing theorem of certain cohomology classes for an 2n-manifold of finite fundamental group which admits a fixed point free circle action. In particular, it implies that any Tk-action on a compact symplectic manifold of finite fundamental group has a non-empty fixed point set. The vanishing theorem is used to prove two finiteness results in which no lower bound on volume is assumed. (i) The set of symplectic n-manifolds of finite fundamental groups with curvature, λ ≤ sec ≤ Λ, and diameter, diam ; ≤ d, contains only finitely many diffeomorphism types depending only on n, λ, Λ and d. (ii) The set of simply connected n-manifolds (n ≤ 6) with λ ≤ sec ≤ Λ and diam ≤ d contains only finitely many diffeomorphism types depending only on n, λ, Λ and d.


Filomat ◽  
2014 ◽  
Vol 28 (1) ◽  
pp. 27-35
Author(s):  
Ali Pakdaman ◽  
Hamid Torabi ◽  
Behrooz Mashayekhy

Let X be a locally 1-connected metric space and A1,A2,...,An be connected, locally path connected and compact pairwise disjoint subspaces of X. In this paper, we show that the quotient space X/(A1,A2,..., An) obtained from X by collapsing each of the sets Ai?s to a point, is also locally 1-connected. Moreover, we prove that the induced continuous homomorphism of quasitopological fundamental groups is surjective. Finally, we give some applications to find out some properties of the fundamental group of the quotient space X/(A1,A2,...,An).


Author(s):  
JEREMY BRAZAS ◽  
PATRICK GILLESPIE

Abstract Infinite product operations are at the forefront of the study of homotopy groups of Peano continua and other locally path-connected spaces. In this paper, we define what it means for a space X to have infinitely commutative $\pi _1$ -operations at a point $x\in X$ . Using a characterization in terms of the Specker group, we identify several natural situations in which this property arises. Maintaining a topological viewpoint, we define the transfinite abelianization of a fundamental group at any set of points $A\subseteq X$ in a way that refines and extends previous work on the subject.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anamaría Font ◽  
Bernardo Fraiman ◽  
Mariana Graña ◽  
Carmen A. Núñez ◽  
Héctor Parra De Freitas

Abstract Compactifications of the heterotic string on special Td/ℤ2 orbifolds realize a landscape of string models with 16 supercharges and a gauge group on the left-moving sector of reduced rank d + 8. The momenta of untwisted and twisted states span a lattice known as the Mikhailov lattice II(d), which is not self-dual for d > 1. By using computer algorithms which exploit the properties of lattice embeddings, we perform a systematic exploration of the moduli space for d ≤ 2, and give a list of maximally enhanced points where the U(1)d+8 enhances to a rank d + 8 non-Abelian gauge group. For d = 1, these groups are simply-laced and simply-connected, and in fact can be obtained from the Dynkin diagram of E10. For d = 2 there are also symplectic and doubly-connected groups. For the latter we find the precise form of their fundamental groups from embeddings of lattices into the dual of II(2). Our results easily generalize to d > 2.


2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


Author(s):  
Ihor Borachok ◽  
Roman Chapko ◽  
B. Tomas Johansson

AbstractWe consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert’s method [


Author(s):  
Sooran Kang ◽  
David Pask ◽  
Samuel B.G. Webster

Abstract We compute a presentation of the fundamental group of a higher-rank graph using a coloured graph description of higher-rank graphs developed by the third author. We compute the fundamental groups of several examples from the literature. Our results fit naturally into the suite of known geometrical results about higher-rank graphs when we show that the abelianization of the fundamental group is the homology group. We end with a calculation which gives a non-standard presentation of the fundamental group of the Klein bottle to the one normally found in the literature.


2012 ◽  
Vol 64 (3) ◽  
pp. 573-587 ◽  
Author(s):  
Norio Nawata

Abstract We introduce the fundamental group ℱ(A) of a simple σ-inital C*-algebra A with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of Fundamental Group of Simple C*-algebras with Unique Trace I and II by Nawata andWatatani. Our definition in this paper makes sense for stably projectionless C*-algebras. We show that there exist separable stably projectionless C*-algebras such that their fundamental groups are equal to ℝ×+ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.


2003 ◽  
Vol 12 (02) ◽  
pp. 243-268 ◽  
Author(s):  
ALBERTO CAVICCHIOLI ◽  
DUŠAN REPOVŠ ◽  
FULVIA SPAGGIARI

We introduce a family of cyclic presentations of groups depending on a finite set of integers. This family contains many classes of cyclic presentations of groups, previously considered by several authors. We prove that, under certain conditions on the parameters, the groups defined by our presentations cannot be fundamental groups of closed connected hyperbolic 3–dimensional orbifolds (in particular, manifolds) of finite volume. We also study the split extensions and the natural HNN extensions of these groups, and determine conditions on the parameters for which they are groups of 3–orbifolds and high–dimensional knots, respectively.


Sign in / Sign up

Export Citation Format

Share Document