scholarly journals Blade Sorting Method for Unbalance Minimization of an Aeroengine Concentric Rotor

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 832
Author(s):  
Chuanzhi Sun ◽  
Pinghuan Xiao ◽  
Xiaoming Wang ◽  
Yongmeng Liu

This paper proposes a blade sorting method based on the cloud adaptive genetic algorithm (CAGA), which is used to optimize the unbalanced of asymmetric rotor of aero-engine. Firstly, by analyzing the unbalance of the arrangement caused by the deviation of the mass moment of the blade, and considering the concentricity of the disk, an optimization model of the unbalanced amount of the blade assembly was established. Secondly, the selection operator, crossover operator, and mutation operator of the algorithm were designed, and the cloud adaptive genetic algorithm was used to optimize the assembly unbalance. Thirdly, the mass moments of a group of aero-engine blades were weighed using a moment scale (MW0), and the blade mass moment distribution and assembly unbalance under the six blade arrangements were analyzed. Finally, by setting different disk concentricity, the corresponding blade arrangement and the final rotor unbalance were obtained. Through analysis, it was found that the unbalance of GA is at least 57.5% optimized relative to the weight sorted, sorting type 2, sorting type 4, and sorting-1/4 skip method, and the unbalance optimized by the CAGA is 95.7% optimized relative to GA. In the case of different initial concentricity of the disk, the effective algorithm accuracy is still maintained, which proves the effectiveness of the method for the arrangement of asymmetric rotor blades. This method establishes an effective asymmetric rotor blade arrangement model, uses the cloud adaptive genetic algorithm to sort the blade assembly, and effectively reduces the unbalanced amount of the asymmetric rotor.

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235735 ◽  
Author(s):  
Xiue Gao ◽  
Wenxue Xie ◽  
Zumin Wang ◽  
Tianshu Zhang ◽  
Bo Chen ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 1370-1373
Author(s):  
Jiao Zheng ◽  
Kan Yang ◽  
Ran Zhou ◽  
Yong Huai Hao ◽  
Guo Shuai Liu

The short-term joint optimal operation simulation of Three Gorges cascade hydropower system aiming at maximum power generation benefit is proposed. And a new method for optimizing cascade hydropower station based on Adaptive Genetic Algorithm (AGA) with trigonometric selective operators is presented. In this paper, the practical optimal operation in power market is described. The temporal-spatial variation of flow between cascade hydropower stations is considered, and time of use (TOU) power price is also taken into account. Moreover, a contrast between Tangent-roulette selection operator and traditional one is made. To a certain degree, the results of simulative optimal operation based on several representative hydrographs show that Tangent-roulette wheel selection operator can find a more excellent solution, because the Tangent-roulette one can overcome the fitness requirements of non-negative. The research achievements also have an important reference for the compilation of daily generation scheduling of Three Gorges cascade hydropower system in the environment of power market.


Sign in / Sign up

Export Citation Format

Share Document