scholarly journals Multiple Granulation Rough Set Approach to Interval-Valued Intuitionistic Fuzzy Ordered Information Systems

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 949
Author(s):  
Zhen Li ◽  
Xiaoyan Zhang

As a further extension of the fuzzy set and the intuitive fuzzy set, the interval-valued intuitive fuzzy set (IIFS) is a more effective tool to deal with uncertain problems. However, the classical rough set is based on the equivalence relation, which do not apply to the IIFS. In this paper, we combine the IIFS with the ordered information system to obtain the interval-valued intuitive fuzzy ordered information system (IIFOIS). On this basis, three types of multiple granulation rough set models based on the dominance relation are established to effectively overcome the limitation mentioned above, which belongs to the interdisciplinary subject of information theory in mathematics and pattern recognition. First, for an IIFOIS, we put forward a multiple granulation rough set (MGRS) model from two completely symmetry positions, which are optimistic and pessimistic, respectively. Furthermore, we discuss the approximation representation and a few essential characteristics for the target concept, besides several significant rough measures about two kinds of MGRS symmetry models are discussed. Furthermore, a more general MGRS model named the generalized MGRS (GMGRS) model is proposed in an IIFOIS, and some important properties and rough measures are also investigated. Finally, the relationships and differences between the single granulation rough set and the three types of MGRS are discussed carefully by comparing the rough measures between them in an IIFOIS. In order to better utilize the theory to realistic problems, an actual case shows the methods of MGRS models in an IIFOIS is given in this paper.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Zhaohao Wang ◽  
Xiaoping Zhang

How to effectively deal with missing values in incomplete information systems (IISs) according to the research target is still a key issue for investigating IISs. If the missing values in IISs are not handled properly, they will destroy the internal connection of data and reduce the efficiency of data usage. In this paper, in order to establish effective methods for filling missing values, we propose a new information system, namely, a fuzzy set-valued information system (FSvIS). By means of the similarity measures of fuzzy sets, we obtain several binary relations in FSvISs, and we investigate the relationship among them. This is a foundation for the researches on FSvISs in terms of rough set approach. Then, we provide an algorithm to fill the missing values in IISs with fuzzy set values. In fact, this algorithm can transform an IIS into an FSvIS. Furthermore, we also construct an algorithm to fill the missing values in IISs with set values (or real values). The effectiveness of these algorithms is analyzed. The results showed that the proposed algorithms achieve higher correct rate than traditional algorithms, and they have good stability. Finally, we discuss the importance of these algorithms for investigating IISs from the viewpoint of rough set theory.


2008 ◽  
Vol 178 (8) ◽  
pp. 1968-1985 ◽  
Author(s):  
Zengtai Gong ◽  
Bingzhen Sun ◽  
Degang Chen

2012 ◽  
Vol 3 (2) ◽  
pp. 38-52 ◽  
Author(s):  
Tutut Herawan

This paper presents an alternative way for constructing a topological space in an information system. Rough set theory for reasoning about data in information systems is used to construct the topology. Using the concept of an indiscernibility relation in rough set theory, it is shown that the topology constructed is a quasi-discrete topology. Furthermore, the dependency of attributes is applied for defining finer topology and further characterizing the roughness property of a set. Meanwhile, the notions of base and sub-base of the topology are applied to find attributes reduction and degree of rough membership, respectively.


2021 ◽  
Vol 40 (1) ◽  
pp. 463-475
Author(s):  
Juan Li ◽  
Yabin Shao ◽  
Xiaoding Qi

 With respect to multiple attribute group decision making problems in which the attribute weights and the expert weights take the form of real numbers and the attribute values take the form of interval-valued uncertain linguistic variable. In this paper, we introduce the idea of variable precision into the incomplete interval-valued fuzzy information system and propose the theory of variable precision rough sets over incomplete interval-valued fuzzy information systems. Then, we give the properties of rough approximation operators and study the knowledge discovery and attribute reduction in the incomplete interval-valued fuzzy information system under the condition that a certain degree of misclassification rate is allowed to exist. Furthermore, a decision rule and decision model are given. Finally, an illustrative example is given and compared with the existing methods, the practicability and effectiveness of this method are further verified.


Author(s):  
JIYE LIANG ◽  
ZONGBEN XU

Rough set theory is emerging as a powerful tool for reasoning about data, knowledge reduction is one of the important topics in the research on rough set theory. It has been proven that finding the minimal reduct of an information system is a NP-hard problem, so is finding the minimal reduct of an incomplete information system. Main reason of causing NP-hard is combination problem of attributes. In this paper, knowledge reduction is defined from the view of information, a heuristic algorithm based on rough entropy for knowledge reduction is proposed in incomplete information systems, the time complexity of this algorithm is O(|A|2|U|). An illustrative example is provided that shows the application potential of the algorithm.


2012 ◽  
Vol 548 ◽  
pp. 735-739
Author(s):  
Hong Mei Nie ◽  
Jia Qing Zhou

Rough set theory has been proposed by Pawlak as a useful tool for dealing with the vagueness and granularity in information systems. Classical rough set theory is based on equivalence relation. The covering rough sets are an improvement of Pawlak rough set to deal with complex practical problems which the latter one can not handle. This paper studies covering-based generalized rough sets. In this setting, we investigate common properties of classical lower and upper approximation operations hold for the covering-based lower and upper approximation operations and relationships among some type of covering rough sets.


Sign in / Sign up

Export Citation Format

Share Document