scholarly journals Atoms in Highly Symmetric Environments: H in Rhodium and Cobalt Cages, H in an Octahedral Hole in MgO, and Metal Atoms Ca-Zn in C20 Fullerenes

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1281
Author(s):  
Zikri Altun ◽  
Erdi Ata Bleda ◽  
Carl Trindle

An atom trapped in a crystal vacancy, a metal cage, or a fullerene might have many immediate neighbors. Then, the familiar concept of valency or even coordination number seems inadequate to describe the environment of that atom. This difficulty in terminology is illustrated here by four systems: H atoms in tetragonal-pyramidal rhodium cages, H atom in an octahedral cobalt cage, H atom in a MgO octahedral hole, and metal atoms in C20 fullerenes. Density functional theory defines structure and energetics for the systems. Interactions of the atom with its container are characterized by the quantum theory of atoms in molecules (QTAIM) and the theory of non-covalent interactions (NCI). We establish that H atoms in H2Rh13(CO)243− trianion cannot be considered pentavalent, H atom in HCo6(CO)151− anion cannot be considered hexavalent, and H atom in MgO cannot be considered hexavalent. Instead, one should consider the H atom to be set in an environmental field defined by its 5, 6, and 6 neighbors; with interactions described by QTAIM. This point is further illustrated by the electronic structures and QTAIM parameters of M@C20, M=Ca to Zn. The analysis describes the systematic deformation and restoration of the symmetric fullerene in that series.

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Ernesto Chigo Anota ◽  
Gregorio Hernández Cocoletzi ◽  
Andres Manuel Garay Tapia

AbstractAb-initio calculations using density functional theory (DFT) are used to investigate the non-covalent interactions between single wall armchair boron nitride nanotubes (BNNTs) with open ends and several heterocyclic molecules: thiophene (T; C


2021 ◽  
Author(s):  
Michelle Enst ◽  
Ganna Gryn'ova

<div> <div> <div> <p>Metal-organic frameworks offer a convenient means for capturing, transporting, and releasing small molecules. Rational design of such systems requires an in-depth understanding of the underlying non-covalent interactions, and the ability to easily and rapidly pre-screen candidate architectures in silico. In this work, we devised a recipe for computing the strength and analysing the nature of the host-guest interactions in MOFs. Using experimentally characterised complexes of calcium-adipate framework with 4,4’-bipyridine and 1,2-bis(4-pyridyl)ethane guests as test systems, we have assessed a range of density functional theory methods, energy decomposition schemes, and non-covalent interactions indicators across realistic periodic and finite supramolecular cluster scales. We find that appropriately constructed clusters readily reproduce the key interactions occurring in periodic models at a fraction of the computational cost and with an added benefit of diverse density partitioning schemes. Host-guest interaction energies can be reliably computed with dispersion- corrected density functional theory methods; however, decoding their precise nature demands insights from energy decomposition schemes and quantum-chemical tools beyond local bonding indices (e.g., the quantum theory of atoms in molecules), such as the non-covalent interactions index and the density overlap regions indicator. </p> </div> </div> </div>


2019 ◽  
Vol 17 (1) ◽  
pp. 703-710 ◽  
Author(s):  
Avni Berisha

AbstractThe mechanism of the adsorption and grafting of diazonium cations onto the surface of graphyne and graphdiyne was investigated using Density Functional Theory (DFT). The adsorption energy (both in vacuum and water as solvent) of the phenyl diazonium cation was evaluated at three different positions of the graphyne and graphdiyne surface. Moreover, the lowest energy adsorption sites were used to calculate and plot Non-covalent Interactions (NCI). The Bond Dissociation Energy (BDE) results (up to 66 kcal/mol) for the scission of the phenyl group support the remarkable stability of the grafted layer. As both of these materials are non-dispersible in aqueous solution, in this work through the use of Molecular Mechanics (MM) and Molecular Dynamics (MD) we explored also the effect of the grafted substituted aryl groups derived from aryldiazonium salts onto the solvation properties of these materials.


2016 ◽  
Vol 20 (08n11) ◽  
pp. 1098-1113 ◽  
Author(s):  
Yang Li ◽  
Hannah M. Rhoda ◽  
Anthony M. Wertish ◽  
Victor N. Nemykin

A reaction between 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin and 1-bromopyrene resulted in the formation of 5,10,15,20-tetra[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (1), while cross-condensation between 4-(4-(pyrenyl-1)butoxy)benzaldehyde, ferrocenecaboxaldehyde, and pyrrole resulted in the formation of 5-ferrocenyl-10,15,20-tri[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (2), 5,10-diferrocenyl-15,20-di[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (3), and 5,15-diferrocenyl-10,20-di[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (4). All pyrene-containing porphyrins were characterized by 1H NMR, UV-vis, MCD, and high-resolution ESI methods, while their electronic structures and the nature of the excited states were elucidated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The molecular structure of 1 and its fluorescence quenching upon the addition of C[Formula: see text] fullerene was also investigated using X-ray crystallography and steady-state fluorescence approaches.


2021 ◽  
Author(s):  
Michelle Enst ◽  
Ganna Gryn'ova

<div> <div> <div> <p>Metal-organic frameworks offer a convenient means for capturing, transporting, and releasing small molecules. Rational design of such systems requires an in-depth understanding of the underlying non-covalent interactions, and the ability to easily and rapidly pre-screen candidate architectures in silico. In this work, we devised a recipe for computing the strength and analysing the nature of the host-guest interactions in MOFs. Using experimentally characterised complexes of calcium-adipate framework with 4,4’-bipyridine and 1,2-bis(4-pyridyl)ethane guests as test systems, we have assessed a range of density functional theory methods, energy decomposition schemes, and non-covalent interactions indicators across realistic periodic and finite supramolecular cluster scales. We find that appropriately constructed clusters readily reproduce the key interactions occurring in periodic models at a fraction of the computational cost and with an added benefit of diverse density partitioning schemes. Host-guest interaction energies can be reliably computed with dispersion- corrected density functional theory methods; however, decoding their precise nature demands insights from energy decomposition schemes and quantum-chemical tools beyond local bonding indices (e.g., the quantum theory of atoms in molecules), such as the non-covalent interactions index and the density overlap regions indicator. </p> </div> </div> </div>


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3530
Author(s):  
Berta Fernández ◽  
Zulema Fernández ◽  
Emilio Quiñoá ◽  
Félix Freire

Supramolecular helices that arise from the self-assembly of small organic molecules via non-covalent interactions play an important role in the structure and properties of the corresponding materials. Here we study the supramolecular helical aggregation of oligo(phenyleneethynylene) monomers from a theoretical point of view, always guiding the studies with experimentally available data. In this way, by systematically increasing the number of monomer units, optimized n-mer geometries are obtained along with the corresponding absorption and circular dichroism spectra. For the geometry optimizations we use density functional theory together with the B3LYP-D3 functional and the 6–31G** basis set. For obtaining the spectra we resort to time-dependent density functional theory using the CAM-B3LYP functional and the 3–21G basis set. These combinations of density functional and basis set were selected after systematic convergence studies. The theoretical results are analyzed and compared to the experimentally available spectra, observing a good agreement.


Sign in / Sign up

Export Citation Format

Share Document