scholarly journals On the Solutions of the b-Family of Novikov Equation

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1765
Author(s):  
Tingting Wang ◽  
Xuanxuan Han ◽  
Yibin Lu

In this paper, we study the symmetric travelling wave solutions of the b-family of the Novikov equation. We show that the b-family of the Novikov equation can provide symmetric travelling wave solutions, such as peakon, kink and smooth soliton solutions. In particular, the single peakon, two-peakon, stationary kink, anti-kink, two-kink, two-anti-kink, bell-shape soliton and hat-shape soliton solutions are presented in an explicit formula.

2018 ◽  
Vol 32 (06) ◽  
pp. 1850082
Author(s):  
Ding Guo ◽  
Shou-Fu Tian ◽  
Li Zou ◽  
Tian-Tian Zhang

In this paper, we consider the (3[Formula: see text]+[Formula: see text]1)-dimensional modified Korteweg–de Vries–Kadomtsev–Petviashvili (mKdV-KP) equation, which can be used to describe the nonlinear waves in plasma physics and fluid dynamics. By using solitary wave ansatz in the form of sech[Formula: see text] function and a direct integrating way, we construct the exact bright soliton solutions and the travelling wave solutions of the equation, respectively. Moreover, we obtain its power series solutions with the convergence analysis. It is hoped that our results can provide the richer dynamical behavior of the KdV-type and KP-type equations.


2011 ◽  
Vol 317-319 ◽  
pp. 2168-2171
Author(s):  
Xiu Rong Guo ◽  
Zheng Tao Liu ◽  
Mei Guo

In order to efficiently search for new soliton solutions to differential-difference equations (DDEs), three kinds of triangle rational functions are first introduced. Then a kind of formal solutions of DDEs are presented which are expressed by a unified nonlinear combination of the three kinds of triangle rational functions. As illustrative examples, the periodic travelling-wave solutions of the discrete modified KdV(mKdV) equations are obtained.


2010 ◽  
Vol 65 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Rathinasamy Sakthivel ◽  
Changbum Chun

In this paper, the exp-function method is applied by using symbolic computation to construct a variety of new generalized solitonary solutions for the Chaffee-Infante equation with distinct physical structures. The results reveal that the exp-function method is suited for finding travelling wave solutions of nonlinear partial differential equations arising in mathematical physics


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Yuriy Turbal ◽  
Andriy Bomba ◽  
Mariana Turbal

We present a new approach to find travelling wave solutions for the Korteweg-de Vries type equations, which allows extending the class of known soliton solutions. Also we propose method for studying the multisoliton solutions of the Korteweg-de Vries type equations.


Author(s):  
Ali Başhan

AbstractThe main aim of this work is to investigate numerical solutions of the two different types of the fifth-order modified Kawahara equation namely bell-shaped soliton solutions and travelling wave solutions that occur thereby the different type of the Korteweg–de Vries equation. For this approach, we have used an effective and simple type of finite difference method namely Crank-Nicolson scheme for time integration and third-order modified cubic B-spline-based differential quadrature method for space integration. We preferred the third-order modified cubic B-splines to solve the fifth-order partial differential equation because of by using low energy, less algebraic process and produce better results than earlier works. To display the efficiency and accuracy of the present fresh approach famous test problems namely bell-shaped single soliton that has negative amplitude and travelling wave solutions that have the both of the positive and negative amplitudes are solved and the error norms L2 and L∞ are calculated and compared with earlier works. Comparison of the error norms show that present fresh approach obtained superior results than earlier works by using same parameters. At the same time, two lowest invariants of the test problems during the simulations are calculated and reported. Besides those, relative changes of invariants are computed and reported.


Author(s):  
Asit Saha ◽  
Battal Gazi Karakoç ◽  
Khalid K. Ali

The goal of the present paper is to obtain and analyze new exact travelling wave solutions and bifurcation behavior of modified Zakharov-Kuznetsov (mZK) equation with higher order dispersion term. For this purpose, first and second simple methods are used to build soliton solutions of travelling wave solutions. Furthermore, bifurcation behavior of traveling waves including new type of quasiperiodic and multi-periodic traveling wave motions have been examined depending on the physical parameters. Multistability for the nonlinear mZK equation has been investigated depending on fixed values of physical parameters with various initial conditions. The suggested methods for the analytical solutions are powerful and benefical tools to obtain the exact travelling wave solutions of nonlinear evolution equations (NLEEs). Two and three-dimensional plots are also provided to illustrate the new solutions. Bifurcation and multistability behaviors of traveling wave solution of the nonlinear mZK equation with higher order dispersion will add some value in the literature of mathematical and plasma physics.


2014 ◽  
Vol 4 (4) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractIn this work, we introduce an extended (3+1)-dimensional nonlinear evolution equation. We determine multiple soliton solutions by using the simplified Hirota’s method. In addition, we establish a variety of travelling wave solutions by using hyperbolic and trigonometric ansatze.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Bin He ◽  
Qing Meng ◽  
Jinhua Zhang ◽  
Yao Long

The Kudryashov-Sinelshchikov equation is studied by using the bifurcation method of dynamical systems and the method of phase portraits analysis. We show that the limit forms of periodic loop solutions contain loop soliton solutions, smooth periodic wave solutions, and periodic cusp wave solutions. Also, some new exact travelling wave solutions are presented through some special phase orbits.


Sign in / Sign up

Export Citation Format

Share Document