scholarly journals A Comparison of Structure Determination of Small Organic Molecules by 3D Electron Diffraction at Cryogenic and Room Temperature

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2131
Author(s):  
Taimin Yang ◽  
Steve Waitschat ◽  
Andrew Kentaro Inge ◽  
Norbert Stock ◽  
Xiaodong Zou ◽  
...  

3D electron diffraction (3D ED), also known as micro-crystal electron diffraction (MicroED), is a rapid, accurate, and robust method for structure determination of submicron-sized crystals. 3D ED has mainly been applied in material science until 2013, when MicroED was developed for studying macromolecular crystals. MicroED was considered as a cryo-electron microscopy method, as MicroED data collection is usually carried out in cryogenic conditions. As a result, some researchers may consider that 3D ED/MicroED data collection on crystals of small organic molecules can only be performed in cryogenic conditions. In this work, we determined the structure for sucrose and azobenzene tetracarboxylic acid (H4ABTC). The structure of H4ABTC is the first crystal structure ever reported for this molecule. We compared data quality and structure accuracy among datasets collected under cryogenic conditions and room temperature. With the improvement in data quality by data merging, it is possible to reveal hydrogen atom positions in small organic molecule structures under both temperature conditions. The experimental results showed that, if the sample is stable in the vacuum environment of a transmission electron microscope (TEM), the data quality of datasets collected under room temperature is at least as good as data collected under cryogenic conditions according to various indicators (resolution, I/σ(I), CC1/2 (%), R1, Rint, ADRA).

2018 ◽  
Vol 74 (6) ◽  
pp. 709-709 ◽  
Author(s):  
E. van Genderen ◽  
M. T. B. Clabbers ◽  
P. P. Das ◽  
A. Stewart ◽  
I. Nederlof ◽  
...  

Corrections are made to Table 1 in the article by van Genderen et al. [Acta Cryst. (2016), A72, 236–242].


2020 ◽  
Author(s):  
Zhehao Huang ◽  
meng ge ◽  
Francesco Carraro ◽  
Christian Doonan ◽  
paolo falcaro ◽  
...  

Many framework materials such as metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are synthesized as polycrystalline powders, which are too small for structure determination by single crystal X-ray diffraction (SCXRD). Here, we show that a three-dimensional (3D) electron diffraction method, namely continuous rotation electron diffraction (cRED), can be used for <i>ab initio</i> structure determination of such materials. As an example, we present a complete structural analysis of a biocomposite, denoted BSA@ZIF-C, where Bovin Serum Albumin (BSA) was encapsulated in a zeolitic imidazolate framework (ZIF). Low electron dose was combined with ultrafast cRED data collection to minimize electron beam damage of the sample. We demonstrate that the atomic structure obtained by cRED is as reliable and accurate as that obtained by single crystal X-ray diffraction. The high accuracy and fast data collection open new opportunities for investigation of cooperative phenomena in framework structures at atomic level.


2020 ◽  
Vol 132 (50) ◽  
pp. 22827-22833
Author(s):  
Tu Sun ◽  
Colan E. Hughes ◽  
Linshuo Guo ◽  
Lei Wei ◽  
Kenneth D. M. Harris ◽  
...  

2020 ◽  
Author(s):  
Zhehao Huang ◽  
meng ge ◽  
Francesco Carraro ◽  
Christian Doonan ◽  
paolo falcaro ◽  
...  

Many framework materials such as metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are synthesized as polycrystalline powders, which are too small for structure determination by single crystal X-ray diffraction (SCXRD). Here, we show that a three-dimensional (3D) electron diffraction method, namely continuous rotation electron diffraction (cRED), can be used for <i>ab initio</i> structure determination of such materials. As an example, we present a complete structural analysis of a biocomposite, denoted BSA@ZIF-C, where Bovin Serum Albumin (BSA) was encapsulated in a zeolitic imidazolate framework (ZIF). Low electron dose was combined with ultrafast cRED data collection to minimize electron beam damage of the sample. We demonstrate that the atomic structure obtained by cRED is as reliable and accurate as that obtained by single crystal X-ray diffraction. The high accuracy and fast data collection open new opportunities for investigation of cooperative phenomena in framework structures at atomic level.


Sign in / Sign up

Export Citation Format

Share Document