scholarly journals Sign Stability of Dual Switching Linear Continuous-Time Positive Systems

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2194
Author(s):  
Liang Liu ◽  
Fei Long ◽  
Lipo Mo ◽  
Qianqian Mu

This paper investigates 1-moment exponential stability and exponential mean-square stability (EMS stability) under average dwell time (ADT) and the preset deterministic switching mechanism of dual switching linear continuous-time positive systems when a numerical realization does not exist. The signs of subsystem matrices, but not their structures of magnitude, are key information that causes a qualitative concept of stability called sign stability. Both 1-moment exponential stability and EMS stability, which are the traditional stability concepts, are generalized intrinsically. Hence, both 1-moment exponential sign stability and EMS sign stability are introduced and are proven based on sign equivalency. It is shown that they are symmetrically and qualitatively stable. Notably, the notion of stability can be checked quantitatively using some examples.

2021 ◽  
pp. 1-13
Author(s):  
Xiuwei Yin ◽  
Guangjun Shen ◽  
Jiang-Lun Wu

In this paper, we study the stability of quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are established. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilizing the mean square stability.


Author(s):  
Yanzi Lin ◽  
Ping Zhao

Abstract In this paper, the global asymptotic stability (GAS) of continuous-time and discrete-time nonlinear impulsive switched positive systems (NISPS) are studied. For continuous-time and discrete-time NISPS, switching signals and impulse signals coexist. For both of these systems, using the multiple max-separable Lyapunov function method and average dwell-time (ADT) method, some sufficient conditions on GAS are given. Based on these, the GAS criteria are also given for continuous-time and discrete-time linear impulsive switched positive systems (LISPS). From our criteria, the stability of the systems can be judged directly from the characteristics of the system functions, switching signals and impulse signals of the systems. Finally, simulation examples verify the validity of the results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yutian Zhang ◽  
Guici Chen ◽  
Qi Luo

AbstractIn this paper, the pth moment exponential stability for a class of impulsive delayed Hopfield neural networks is investigated. Some concise algebraic criteria are provided by a new method concerned with impulsive integral inequalities. Our discussion neither requires a complicated Lyapunov function nor the differentiability of the delay function. In addition, we also summarize a new result on the exponential stability of a class of impulsive integral inequalities. Finally, one example is given to illustrate the effectiveness of the obtained results.


2003 ◽  
Vol 6 ◽  
pp. 297-313 ◽  
Author(s):  
Desmond J. Higham ◽  
Xuerong Mao ◽  
Andrew M. Stuart

AbstractPositive results are proved here about the ability of numerical simulations to reproduce the exponential mean-square stability of stochastic differential equations (SDEs). The first set of results applies under finite-time convergence conditions on the numerical method. Under these conditions, the exponential mean-square stability of the SDE and that of the method (for sufficiently small step sizes) are shown to be equivalent, and the corresponding second-moment Lyapunov exponent bounds can be taken to be arbitrarily close. The required finite-time convergence conditions hold for the class of stochastic theta methods on globally Lipschitz problems. It is then shown that exponential mean-square stability for non-globally Lipschitz SDEs is not inherited, in general, by numerical methods. However, for a class of SDEs that satisfy a one-sided Lipschitz condition, positive results are obtained for two implicit methods. These results highlight the fact that for long-time simulation on nonlinear SDEs, the choice of numerical method can be crucial.


Sign in / Sign up

Export Citation Format

Share Document