Stability analysis of nonlinear impulsive switched positive systems

Author(s):  
Yanzi Lin ◽  
Ping Zhao

Abstract In this paper, the global asymptotic stability (GAS) of continuous-time and discrete-time nonlinear impulsive switched positive systems (NISPS) are studied. For continuous-time and discrete-time NISPS, switching signals and impulse signals coexist. For both of these systems, using the multiple max-separable Lyapunov function method and average dwell-time (ADT) method, some sufficient conditions on GAS are given. Based on these, the GAS criteria are also given for continuous-time and discrete-time linear impulsive switched positive systems (LISPS). From our criteria, the stability of the systems can be judged directly from the characteristics of the system functions, switching signals and impulse signals of the systems. Finally, simulation examples verify the validity of the results.

2011 ◽  
Vol 48-49 ◽  
pp. 1093-1096
Author(s):  
Xiu Yong Ding ◽  
Lan Shu ◽  
Chang Cheng Xiang ◽  
Xiu Liu

This brief investigates the stability problem of discrete-time switched positive systems with delays, and establishes some necessary and sufficient conditions for the existence of a switched copositive Lyapunov function(SCLF) for such systems. It turns out that the size of the delays does not affect the stability of these systems. In other words, system stability is completely determined by the system matrices.


2014 ◽  
Vol 945-949 ◽  
pp. 2543-2546
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

Switching control and stability issues for discrete-time switched systems whose subsystems are all discrete-time fuzzy systems are studied and new results derived. Innovated representation models for switched fuzzy systems are proposed. The common Lyapunov function method has been adopted to study the stability of this class of switched fuzzy systems. Sufficient conditions for asymptotic stability are presented. The main conditions are given in form of linear matrix inequalities (LMIs), which are easily solvable. The elaborated illustrative examples and the respective simulation experiments demonstrate the effectiveness of the proposed method.


2016 ◽  
Vol 26 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Andrzej Ruszewski

Abstract The stability problems of fractional discrete-time linear scalar systems described by the new model are considered. Using the classical D-partition method, the necessary and sufficient conditions for practical stability and asymptotic stability are given. The considerations are il-lustrated by numerical examples.


2016 ◽  
Vol 39 (2) ◽  
pp. 224-229 ◽  
Author(s):  
Tingting Liu ◽  
Baowei Wu ◽  
Yue-E Wang ◽  
Lili Liu

The stability and stabilization of discrete-time linear positive switched systems are discussed in this paper. First, based on the concept of the forward mode-dependent average dwell time, a stability result for discrete-time linear positive switched systems is obtained by utilizing the multiple linear copositive Lyapunov functions. Then, by introducing multiple-sample Lyapunov-like functions variation, a new exponential stability result is derived. Finally, the conditions for the existence of mode-dependent stabilizing state feedback controllers are investigated, and two illustrative examples are given to show the correctness of the theoretical results obtained.


2012 ◽  
Vol 22 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Tadeusz Kaczorek

Checking of the positivity of descriptor linear systems with singular pencilsA method for checking of the positivity of descriptor continuous-time and discrete-time linear systems with singular pencil is proposed. The method is based on elementary row and column operations on the matrices of descriptor systems. Necessary and sufficient conditions for the positivity of the descriptor systems are established.


Author(s):  
Tadeusz Kaczorek

Fractional Positive Continuous-Time Linear Systems and Their ReachabilityA new class of fractional linear continuous-time linear systems described by state equations is introduced. The solution to the state equations is derived using the Laplace transform. Necessary and sufficient conditions are established for the internal and external positivity of fractional systems. Sufficient conditions are given for the reachability of fractional positive systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Qingyu Su ◽  
Peipei Wang

The stability and the stabilization problems for a class of continuous-time switched systems with state constraints via a mode-dependent switching method are investigated. The paper presents an improved average dwell time method, which considers different decay rates of a Lyapunov function related to each of the active subsystems according to whether the saturations occur or not, respectively. It is shown that the improved average dwell time method is less conservative than the common average dwell time method. Based on the improved average dwell time method, the sufficient conditions and state feedback controllers for stabilization of the switched system are derived. A numerical example is given to illustrate the proposed approach.


2017 ◽  
Vol 65 (5) ◽  
pp. 709-714 ◽  
Author(s):  
Ł. Sajewski

Abstract Positive descriptor fractional discrete-time linear systems with fractional different orders are addressed in the paper. The decomposition of the regular pencil is used to extend necessary and sufficient conditions for positivity of the descriptor fractional discrete-time linear system with different fractional orders. A method for finding the decentralized controller for the class of positive systems is proposed and its effectiveness is demonstrated on a numerical example.


Author(s):  
Tadeusz Kaczorek

AbstractThe positivity and stability of standard and fractional descriptor continuous-time linear and nonlinear systems are addressed. Necessary and sufficient conditions for the positivity of descriptor linear and sufficient conditions for nonlinear systems are established. Using an extension of Lyapunov method sufficient conditions for the stability of positive nonlinear systems are given. The considerations are extended to fractional nonlinear systems.


Sign in / Sign up

Export Citation Format

Share Document