scholarly journals Exploring the Role of Staphylococcus Aureus Toxins in Atopic Dermatitis

Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 321 ◽  
Author(s):  
Fabio Seiti Yamada Yoshikawa ◽  
Josenilson Feitosa de Lima ◽  
Maria Notomi Sato ◽  
Yasmin Álefe Leuzzi Ramos ◽  
Valeria Aoki ◽  
...  

Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense pruritus and xerosis. AD pathogenesis is multifactorial, involving genetic, environmental, and immunological factors, including the participation of Staphylococcus aureus. This bacterium colonizes up to 30–100% of AD skin and its virulence factors are responsible for its pathogenicity and antimicrobial survival. This is a concise review of S. aureus superantigen-activated signaling pathways, highlighting their involvement in AD pathogenesis, with an emphasis on skin barrier disruption, innate and adaptive immunity dysfunction, and microbiome alterations. A better understanding of the combined mechanisms of AD pathogenesis may enhance the development of future targeted therapies for this complex disease.

2019 ◽  
Vol 29 (2) ◽  
pp. 214-227 ◽  
Author(s):  
Ivana Čepelak ◽  
Slavica Dodig ◽  
Ivan Pavić

There is an increasing number of experimental, genetic and clinical evidence of atopic dermatitis expression as a pre-condition for later development of other atopic diseases such as asthma, food allergy and allergic rhinitis. Atopic dermatitis is a heterogeneous, recurrent childhood disease, also present in the adult age. It is increasingly attributed to systemic features and is characterized by immunological and skin barrier integrity and function dysregulation. To maintain the protective function of the skin barrier, in particular the maintenance of pH, hydration and antimicrobial functions, the filaggrin, among others, plays a significant role. Filaggrin is a multifunctional, histidine-rich, insoluble protein. The lack of filaggrin is associated with various cutaneous (e.g. ichthyosis vulgaris, allergic contact dermatitis) and non-cutaneous (e.g. diabetes, inflammatory conditions of the gastrointestinal tract) diseases and may be a result of genetic, immunological factors combined with environmental factors. In this review we summarised (emphasized) recent findings in understanding the role of filaggrin in atopic dermatitis and other diseases, participants in the atopic march.


2021 ◽  
Vol 22 (13) ◽  
pp. 7227
Author(s):  
Lai-San Wong ◽  
Yu-Ta Yen ◽  
Chih-Hung Lee

Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.


2018 ◽  
Vol 27 (2) ◽  
pp. 107-112
Author(s):  
Amal A. Wafy ◽  
Wageih S. Elnaghy ◽  
Nashwa El-Far ◽  
Sara A. Hamam ◽  
Mohammed El-Gamasy

Author(s):  
Ankie Lebon ◽  
Joost A. M. Labout ◽  
Henri A. Verbrugh ◽  
Vincent W. V. Jaddoe ◽  
Albert Hofman ◽  
...  

2017 ◽  
Vol 12 (14) ◽  
pp. 1327-1334 ◽  
Author(s):  
Simone Saintive ◽  
Eliane Abad ◽  
Dennis de C Ferreira ◽  
Mayra Stambovsky ◽  
Fernanda S Cavalcante ◽  
...  

Medicina ◽  
2019 ◽  
Vol 55 (8) ◽  
pp. 460 ◽  
Author(s):  
Arianna Giannetti ◽  
Francesca Cipriani ◽  
Valentina Indio ◽  
Marcella Gallucci ◽  
Carlo Caffarelli ◽  
...  

Background and Objectives: Cow’s milk protein allergy (CMA) is the most common allergy in children. The natural history of CMA is generally favorable and the majority of children reach tolerance during childhood, even if studies show variable results. Atopic dermatitis (AD) is a complex disease from an immunological point of view. It is characterized by an impaired skin barrier function and is often the first clinical manifestation of the so-called “atopic march”. The aim of our study is to evaluate, in a cohort of children with CMA, if the presence of AD in the first months of life can influence the atopic status of patients, the tolerance acquisition to cow’s milk, the level of specific IgE (sIgE), and the sensitization towards food and/or inhalant allergens. Materials and Methods: We enrolled 100 children with a diagnosis of CMA referred to our Pediatric Allergology Unit, aged 1–24 months at the time of the first visit. Results: 71 children had AD and 29 did not. The mean follow-up was 5.28 years. The CMA manifestations were mainly cutaneous, especially in children with AD (91.6% vs. 51.7%; P < 0.001). Patients with AD showed higher rates of polysensitization to foods and higher levels of both total IgE and sIgE for milk, casein, wheat, peanuts, and cat dander at different ages when compared to patients without AD. We analyzed the presence of IgE sensitization for the main foods and inhalants at various ages in the two groups of patients: a statistically significant difference emerged in the two groups of patients for milk, yolk and egg white, hazelnut, peanuts, soybean, grass pollen and cat dander. Meanwhile, we did not find significant differences in terms of tolerance acquisition toward cow’s milk, which was nonetheless reached around 5 years of age in 61% of patients. The level of cow’s milk sIgE at the age of 5 years was significantly higher in the group of patients who did not acquire tolerance (38.38 vs. 5.22 kU/L; P < 0.0001). Conclusions: An early barrier deficiency appears to promote the development of allergic sensitization, but does not seem to influence the acquisition of tolerance.


Sign in / Sign up

Export Citation Format

Share Document