inflammatory molecules
Recently Published Documents


TOTAL DOCUMENTS

489
(FIVE YEARS 246)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhenzhen Zhu ◽  
Weiqing Wang ◽  
Yang Zha ◽  
Xiaowei Wang ◽  
Lei Wang ◽  
...  

Background: The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and mechanisms underlying different responses to systemic glucocorticoids (GC) remain unclear. The major aim of this study was to explore the transcriptomic and oxidative lipidomic signatures and the effects of GC in patients with different clinical responses.Methods: Nasal polyp biopsies were obtained before and after 14-day oral GC treatment from 16 patients with CRSwNP, and normal nasal mucosa specimens were collected from 12 control subjects. RNA sequencing and oxidative lipidomics were performed, and differential gene expression analysis was conducted in the Responder and Non-responder groups at baseline and after treatment.Results: In the Responder group, GC significantly improved clinical symptoms and reduced tissue eosinophil infiltration. Meanwhile, GC led to a pronounced transcriptomic reversion with robust suppression of inflammatory responses and abnormal metabolism of extracellular matrix, as well as restoration of cilia function. However, non-responders were mainly characterized by epithelial hyperplasia and keratinization, with much less transcriptomic improvement after GC treatment. Higher expression of type 2 inflammatory molecules (CCL13, IGHE, CCL18, CCL23, CCR3, and CLC) with lower levels of LACRT, PPDPFL, DES, C6, MUC5B, and SCGB3A1 were related to a stronger clinical response to GC. Besides decreased prostaglandins and increased leukotrienes, increased dysregulation in other oxylipid mediators derived from polyunsaturated fatty acids was determined in nasal polyps, which was ameliorated by GC treatment.Conclusion: Systemic GC exert anti-inflammatory effects, improve tissue remodeling, restore cilia function, and ameliorate dysregulation of oxylipid mediator pathway in CRSwNP. GC-responders exhibited different transcriptomic signatures from non-responders.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 139
Author(s):  
Antonio Solis-Leal ◽  
Summer Siddiqui ◽  
Fei Wu ◽  
Mahesh Mohan ◽  
Wenhui Hu ◽  
...  

The central nervous system (CNS) HIV reservoir is an obstacle to achieving an HIV cure. The basal ganglia harbor a higher frequency of SIV than other brain regions in the SIV-infected rhesus macaques of Chinese-origin (chRMs) even on suppressive combination antiretroviral therapy (ART). Since residual HIV/SIV reservoir is associated with inflammation, we characterized the neuroinflammation by gene expression and systemic levels of inflammatory molecules in healthy controls and SIV-infected chRMs with or without ART. CCL2, IL-6, and IFN-γ were significantly reduced in the cerebrospinal fluid (CSF) of animals receiving ART. Moreover, there was a correlation between levels of CCL2 in plasma and CSF, suggesting the potential use of plasma CCL2 as a neuroinflammation biomarker. With higher SIV frequency, the basal ganglia of untreated SIV-infected chRMs showed an upregulation of secreted phosphoprotein 1 (SPP1), which could be an indicator of ongoing neuroinflammation. While ART greatly reduced neuroinflammation in general, proinflammatory genes, such as IL-9, were still significantly upregulated. These results expand our understanding of neuroinflammation and signaling in SIV-infected chRMs on ART, an excellent model to study HIV/SIV persistence in the CNS.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mari Kamiya ◽  
Fumitaka Mizoguchi ◽  
Kimito Kawahata ◽  
Dengli Wang ◽  
Masahiro Nishibori ◽  
...  

AbstractMuscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Qianhao Wei

Background. Osteoarthritis is one of the usual chronic musculoskeletal dysfunctions. It is one of the primary leading causes which leads to limitation of movement and absenteeism in the working adult population. Chondrocytes are the singlecellular-based component found in the cartilage which has an important role in the degradation of the cartilage. In recent studies, autophagy is observed to protect the human chondrocytes from stress.Leptin an adipokine managing food consumption and energy outlay. Chondrocytes indicate prolonged isoform of the leptin receptor where inside these cells theleptin signals individually or combine with the remaining molecules and promptthe indication of the pro-inflammatory molecules and cartilage disintegration enzymes. Materials and Methods. mRNA expressions of Lysyl oxidase-like 3 in tissues of cartilage and concentration of leptin from synovial fluidwere measured from all samples from disease-induced groups, sham group, and RAPA-treated groups via RT-PCR and immunoassays. Histopathological analysis was also performed post-induction of the rat osteoarthritis model by the anterior cruciate ligament transection method. Western blot analysis was done, and expressions were analyzed by autophagy and apoptosis regulatory markers. Cell apoptosis and cell survival were evaluated with the help of flow cytometry, respectively, in all groups. Result. mRNA of LOXL3 was increased in osteoarthritis models which were directly related to leptin concentration in SF. ACLT surgery caused an increase in cleaved caspase 3 protein levels, while a significant reduction in Bcl-2, Beclin1, and LC3 I was noted (figure 4,5). When LOXL3 was silenced in the ACLT group and leptin-treated group apoptosis was inhibited and autophagy, cell proliferation was promoted in primary chondrocytes. A significant increase in LOXL3 caused inhibition of autophagy in chondrocytes. Conclusion. LOXL3 has stimulated apoptosis while inhibited autophagy in chondrocytes; hence LOXL3 is a prominent target for treating osteoarthritis. Keywords:chondrocytes, LOXL3, Leptin, osteoarthritis, qRT-PCR, ACLT, mRNA.


2022 ◽  
Author(s):  
Pedro-Antonio Regidor ◽  
Xavier de la Rosa ◽  
Anna Mueller ◽  
Manuela Sailer ◽  
Fernando Gonzalez Santos ◽  
...  

Abstract Introduction: Polycystic Ovary Syndrome (PCOS) is an endocrinologic disorder that affects 5-15 % of women of their reproductive age and is a frequent cause of infertility. Major symptoms include hyperandrogenism, ovulatory dysfunction, and often obesity and/or insulin resistance. PCOS also represents a state of chronic low-grade inflammation that is closely interlinked with the metabolic features. "Classical" pro-inflammatory lipid mediators like prostaglandins (PG), leukotrienes (LT), or thromboxanes (TX) are derived from arachidonic acid (AA) and are crucial for the initial response. Resolution processes are driven by four families of so-called specialized pro-resolving mediators (SPMs): resolvins, maresins, lipoxins, and protectins. The study aimed to establish lipid mediator profiles of PCOS patients compared to healthy women to identify differences in their resolutive and pro-inflammatory lipid parameters. Material and Methods: Fifteen female patients (18-45 years) were diagnosed with PCOS according to Rotterdam criteria, and five healthy women, as comparator group, were recruited for the study. The main outcome measures were: Pro-inflammatory lipid mediators (PG, LT, TX) and their precursor AA; SPMs (Resolvins, Maresins, Protectins, Lipoxins), their precursors EPA, DHA, DPA, and their active biosynthesis pathway intermediates (18-HEPE, 17-HDHA, 14-HDHA).Results: The level of pro-inflammatory parameters in serum was significantly higher in PCOS-affected women. The ratio [(sum of pro-inflammatory molecules) / (sum of SPMs plus hydroxylated intermediates)] reflecting the inflammatory state was significantly lower in the group of healthy women.Conclusion: There is a strong pro-inflammatory state in PCOS patients. Further research will clarify whether supplementation with SPMs or their precursors may improve this state.


2022 ◽  
Author(s):  
Ramesh Kumar Sharma ◽  
Maria Anna Coniglio ◽  
Pasqualina Laganà

2021 ◽  
Author(s):  
Shruthi N ◽  
Nithyashree R ◽  
Elakkiya Elumalai ◽  
Krishna Kant Gupta

The loss of natural teeth can be avoided by invoking the molecular signal behind teeth regeneration. The destruction of the connective tissues is mainly due to bacterial origin which reacts to dental caries, a multifactorial disease. Glycosyl transferase is the enzyme which is involved in the glycosidic linkage. Glucosyltransferase inactivation reduces dental caries. This enzyme is a crucial virulence factor of Streptococcus mutans, a major pathogen that causes dental caries. In this present work, screening was done with library of anti-oxidant and anti-inflammatory molecules against the crystal structure of the target protein. Based on the predicted binding affinities, small molecules were selected and evaluated for their activity. Further, attempts were done to evaluate the toxicity of the lead compounds and compounds with no toxicity and good binding affinity were subjected for simulation and compared with reference complex. The potential energy of Glycosyl transferase-Eudesmol (proposed compound) (-1500 kj/mol) indicates its higher stability as compared to Glycosyl tranferase-G43 (reference) complex (-1100kj/mol). The inactives and actives compound for Glycosyl transferase was predicted from DeepScreening server.


Author(s):  
Esmeralda Parra-Peralbo ◽  
Ana Talamillo ◽  
Rosa Barrio

Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ramasatyaveni Geesala ◽  
You-Min Lin ◽  
Ke Zhang ◽  
Xuan-Zheng Shi

Mechano-transcription is a process whereby mechanical stress alters gene expression. The gastrointestinal (GI) tract is composed of a series of hollow organs, often encountered by transient or persistent mechanical stress. Recent studies have revealed that persistent mechanical stress is present in obstructive, functional, and inflammatory disorders and alters gene transcription in these conditions. Mechano-transcription of inflammatory molecules, pain mediators, pro-fibrotic and growth factors has been shown to play a key role in the development of motility dysfunction, visceral hypersensitivity, inflammation, and fibrosis in the gut. In particular, mechanical stress-induced cyclooxygenase-2 (COX-2) and certain pro-inflammatory mediators in gut smooth muscle cells are responsible for motility dysfunction and inflammatory process. Mechano-transcription of pain mediators such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) may lead to visceral hypersensitivity. Emerging evidence suggests that mechanical stress in the gut also leads to up-regulation of certain proliferative and pro-fibrotic mediators such as connective tissue growth factor (CTGF) and osteopontin (OPN), which may contribute to fibrostenotic Crohn’s disease. In this review, we will discuss the pathophysiological significance of mechanical stress-induced expression of pro-inflammatory molecules, pain mediators, pro-fibrotic and growth factors in obstructive, inflammatory, and functional bowel disorders. We will also evaluate potential therapeutic targets of mechano-transcription process for the management of these disorders.


2021 ◽  
Author(s):  
Dimitrios Kouroupis ◽  
Lee D Kaplan ◽  
Thomas M Best

Abstract Within the human knee infrapatellar fat pad (IFP) and synovium, resident synoviocytes and macrophages contribute to the onset and progression of inflammatory joint diseases. Our hypothesis is that IFP-derived mesenchymal stem cells (IFP-MSC) robust immunomodulatory therapeutic effects are largely exerted via their exosomal (IFP-MSC EXOs) secretome by attenuating synoviocyte and macrophage pro-inflammatory activation. IFP-MSC EXOs showed distinct miRNA and protein immunomodulatory profiles. Reactome analysis of 24 miRNAs highly present in exosomes showed their involvement in the regulation of six gene groups, including immune system. Exosomes were enriched for immunomodulatory and reparative proteins that are involved in positive regulation of cell proliferation, response to stimulus, signal transduction, signal receptor activity, and protein phosphorylation. Stimulated synoviocytes or macrophages exposed to IFP-MSC EXOs demonstrated significantly reduced proliferation, altered inflammation-related molecular profiles, and reduced secretion of pro-inflammatory molecules compared to stimulated alone. In an acute synovial/IFP inflammation rat model, IFP-MSC EXOs therapeutic treatment resulted in robust macrophage polarization towards an anti-inflammatory therapeutic M2 phenotype within the synovium/IFP tissues. Based on these findings, we propose a viable cell-free alternative to MSC-based therapeutics as an alternative approach to treating synovitis and IFP fibrosis.


Sign in / Sign up

Export Citation Format

Share Document