scholarly journals Multiverse Predictions for Habitability: Number of Potentially Habitable Planets

Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 157 ◽  
Author(s):  
McCullen Sandora

How good is our universe at making habitable planets? The answer to this depends on which factors are important for life: Does a planet need to be Earth mass? Does it need to be inside the temperate zone? are systems with hot Jupiters habitable? Here, we adopt different stances on the importance of each of these criteria to determine their effects on the probabilities of measuring the observed values of several physical constants. We find that the presence of planets is a generic feature throughout the multiverse, and for the most part conditioning on their particular properties does not alter our conclusions much. We find conflict with multiverse expectations if planetary size is important and it is found to be uncorrelated with stellar mass, or the mass distribution is too steep. The existence of a temperate circumstellar zone places tight lower bounds on the fine structure constant and electron to proton mass ratio.

1994 ◽  
Vol 159 ◽  
pp. 361-362
Author(s):  
D.A. Varshalovich ◽  
A.Y. Potekhin

Constraints on possible variation rate of the fine-structure constant, , and the electron-proton mass ratio , over cosmological time scales are obtained from analyses of quasar spectroscopic data.


2009 ◽  
Vol 87 (1) ◽  
pp. 25-33 ◽  
Author(s):  
V V Flambaum ◽  
V A Dzuba

The search for variation of the fundamental constants such as the fine-structure constant α (α = e2/hc) and the ratios of fundamental masses (for example, electron-to-proton mass ratio μ = me/mp) is reviewed. Strong emphasis is given to establishing the relationships between the change in the measured frequencies of atomic, molecular, or nuclear transitions and the corresponding change of the fundamental constants. Transitions in which the sensitivity of the frequency change to the variation of the fine-structure constant is strongly enhanced are discussed and most recent experimental results are presented. Most attention is given to the use of atomic, molecular, and nuclear transitions in the study of quasar absorption spectra and in atomic clock experiments.PACS Nos.: 31.25.Eb, 31.25.Jf


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 149 ◽  
Author(s):  
McCullen Sandora

In a multiverse setting, we expect to be situated in a universe that is exceptionally good at producing life. Though the conditions for what life needs to arise and thrive are currently unknown, many will be tested in the coming decades. Here we investigate several different habitability criteria, and their influence on multiverse expectations: Does complex life need photosynthesis? Is there a minimum timescale necessary for development? Can life arise on tidally locked planets? Are convective stars habitable? Variously adopting different stances on each of these criteria can alter whether our observed values of the fine structure constant, the electron to proton mass ratio, and the strength of gravity are typical to high significance. This serves as a way of generating predictions for the requirements of life that can be tested with future observations, any of which could falsify the multiverse scenario.


2010 ◽  
Vol 81 (4) ◽  
Author(s):  
Rollin A. King ◽  
Ali Siddiqi ◽  
Wesley D. Allen ◽  
Henry F. Schaefer

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2017 ◽  
Vol 5 (2) ◽  
pp. 46 ◽  
Author(s):  
Michael Sherbon

From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.


2018 ◽  
Author(s):  
Michael A. Sherbon

After a brief review of the golden ratio in history and our previous exposition of the fine-structure constant and equations with the exponential function, the fine-structure constant is studied in the context of other research calculating the fine-structure constant from the golden ratio geometry of the hydrogen atom. This research is extended and the fine-structure constant is then calculated in powers of the golden ratio to an accuracy consistent with the most recent publications. The mathematical constants associated with the golden ratio are also involved in both the calculation of the fine-structure constant and the proton-electron mass ratio. These constants are included in symbolic geometry of historical relevance in the science of the ancients.


Sign in / Sign up

Export Citation Format

Share Document