scholarly journals Aerosolized Exposure to H5N1 Influenza Virus Causes Less Severe Disease Than Infection via Combined Intrabronchial, Oral, and Nasal Inoculation in Cynomolgus Macaques

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 345
Author(s):  
Petra Mooij ◽  
Marieke A. Stammes ◽  
Daniella Mortier ◽  
Zahra Fagrouch ◽  
Nikki van Driel ◽  
...  

Infection with highly pathogenic avian H5N1 influenza virus in humans often leads to severe respiratory disease with high mortality. Experimental infection in non-human primates can provide additional insight into disease pathogenesis. However, such a model should recapitulate the disease symptoms observed in humans, such as pneumonia and inflammatory cytokine response. While previous studies in macaques have demonstrated the occurrence of typical lesions in the lungs early after infection and a high level of immune activation, progression to severe disease and lethality were rarely observed. Here, we evaluated a routinely used combined route of infection via intra-bronchial, oral, and intra-nasal virus inoculation with aerosolized H5N1 exposure, with or without the regular collection of bronchoalveolar lavages early after infection. Both combined route and aerosol exposure resulted in similar levels of virus replication in nose and throat and similar levels of immune activation, cytokine, and chemokine release in the blood. However, while animals exposed to H5N1 by combined-route inoculation developed severe disease with high lethality, aerosolized exposure resulted in less lesions, as measured by consecutive computed tomography and less fever and lethal disease. In conclusion, not virus levels or immune activation, but route of infection determines fatal outcome for highly pathogenic avian H5N1 influenza infection.

2007 ◽  
Vol 79 (6) ◽  
pp. 811-819 ◽  
Author(s):  
Takeshi Ichinohe ◽  
Noriyo Nagata ◽  
Peter Strong ◽  
Shin-ichi Tamura ◽  
Hidehiro Takahashi ◽  
...  

mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Adrianus C. M. Boon ◽  
David Finkelstein ◽  
Ming Zheng ◽  
Guochun Liao ◽  
John Allard ◽  
...  

ABSTRACTThe genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host’s immune response to the virus. In humans, it is unclear which aspect dictates the severity of H5N1 virus disease. To identify the mechanism underlying differential responses to H5N1 virus infection in a genetically diverse population, we assessed the host responses and lung viral loads in 21 inbred mouse strains upon intranasal inoculation with A/Hong Kong/213/03 (H5N1). Resistant mouse strains survived large inocula while susceptible strains succumbed to infection with 1,000- to 10,000-fold-lower doses. Quantitative analysis of the viral load after inoculation with an intermediate dose found significant associations with lethality as early as 2 days postinoculation, earlier than any other disease indicator. The increased viral titers in the highly susceptible strains mediated a hyperinflamed environment, indicated by the distinct expression profiles and increased production of inflammatory mediators on day 3. Supporting the hypothesis that viral load rather than an inappropriate response to the virus was the key severity-determining factor, we performed quantitative real-time PCR measuring the cytokine/viral RNA ratio. No significant differences between susceptible and resistant mouse strains were detected, confirming that it is the host genetic component controlling viral load, and therefore replication dynamics, that is primarily responsible for a host’s susceptibility to a given H5N1 virus.IMPORTANCEHighly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response.


2011 ◽  
Vol 55 (5) ◽  
pp. 2004-2010 ◽  
Author(s):  
M. Naughtin ◽  
J. C. Dyason ◽  
S. Mardy ◽  
S. Sorn ◽  
M. von Itzstein ◽  
...  

ABSTRACTThe evolution of the highly pathogenic H5N1 influenza virus produces genetic variations that can lead to changes in antiviral susceptibility and in receptor-binding specificity. In countries where the highly pathogenic H5N1 virus is endemic or causes regular epidemics, the surveillance of these changes is important for assessing the pandemic risk. In Cambodia between 2004 and 2010, there have been 26 outbreaks of highly pathogenic H5N1 influenza virus in poultry and 10 reported human cases, 8 of which were fatal. We have observed naturally occurring mutations in hemagglutinin (HA) and neuraminidase (NA) of Cambodian H5N1 viruses that were predicted to alter sensitivity to neuraminidase inhibitors (NAIs) and/or receptor-binding specificity. We tested H5N1 viruses isolated from poultry and humans between 2004 and 2010 for sensitivity to the NAIs oseltamivir (Tamiflu) and zanamivir (Relenza). All viruses were sensitive to both inhibitors; however, we identified a virus with a mildly decreased sensitivity to zanamivir and have predicted that a V149A mutation is responsible. We also identified a virus with a hemagglutinin A134V mutation, present in a subpopulation amplified directly from a human sample. Using reverse genetics, we verified that this mutation is adaptative for human α2,6-linked sialidase receptors. The importance of an ongoing surveillance of H5N1 antigenic variance and genetic drift that may alter receptor binding and sensitivities of H5N1 viruses to NAIs cannot be underestimated while avian influenza remains a pandemic threat.


2008 ◽  
Vol 83 (4) ◽  
pp. 1742-1753 ◽  
Author(s):  
John Steel ◽  
Anice C. Lowen ◽  
Lindomar Pena ◽  
Matthew Angel ◽  
Alicia Solórzano ◽  
...  

ABSTRACT Due to the high mortality associated with recent, widely circulating strains of H5N1 influenza virus in poultry, the recurring introduction of H5N1 viruses from birds to humans, and the difficulties in H5N1 eradication by elimination of affected flocks, an effective vaccine against HPAI (highly pathogenic avian influenza) is highly desirable. Using reverse genetics, a set of experimental live attenuated vaccine strains based on recombinant H5N1 influenza virus A/Viet Nam/1203/04 was generated. Each virus was attenuated through expression of a hemagglutinin protein in which the polybasic cleavage site had been removed. Viruses were generated which possessed a full-length NS1 or a C-terminally truncated NS1 protein of 73, 99, or 126 amino acids. Viruses with each NS genotype were combined with a PB2 polymerase gene which carried either a lysine or a glutamic acid at position 627. We predicted that glutamic acid at position 627 of PB2 would attenuate the virus in mammalian hosts, thus increasing the safety of the vaccine. All recombinant viruses grew to high titers in 10-day-old embryonated chicken eggs but were attenuated in mammalian cell culture. Induction of high levels of beta interferon by all viruses possessing truncations in the NS1 protein was demonstrated by interferon bioassay. The viruses were each found to be highly attenuated in a mouse model. Vaccination with a single dose of any virus conferred complete protection from death upon challenge with a mouse lethal virus expressing H5N1 hemagglutinin and neuraminidase proteins. In a chicken model, vaccination with a single dose of a selected virus encoding the NS1 1-99 protein completely protected chickens from lethal challenge with homologous HPAI virus A/Viet Nam/1203/04 (H5N1) and provided a high level of protection from a heterologous virus, A/egret/Egypt/01/06 (H5N1). Thus, recombinant influenza A/Viet Nam/1203/04 viruses attenuated through the introduction of mutations in the hemagglutinin, NS1, and PB2 coding regions display characteristics desirable for live attenuated vaccines and hold potential as vaccine candidates in poultry as well as in mammalian hosts.


2005 ◽  
Vol 79 (17) ◽  
pp. 11269-11279 ◽  
Author(s):  
K. M. Sturm-Ramirez ◽  
D. J. Hulse-Post ◽  
E. A. Govorkova ◽  
J. Humberd ◽  
P. Seiler ◽  
...  

ABSTRACT Wild waterfowl are the natural reservoir of all influenza A viruses, and these viruses are usually nonpathogenic in these birds. However, since late 2002, H5N1 outbreaks in Asia have resulted in mortality among waterfowl in recreational parks, domestic flocks, and wild migratory birds. The evolutionary stasis between influenza virus and its natural host may have been disrupted, prompting us to ask whether waterfowl are resistant to H5N1 influenza virus disease and whether they can still act as a reservoir for these viruses. To better understand the biology of H5N1 viruses in ducks and attempt to answer this question, we inoculated juvenile mallards with 23 different H5N1 influenza viruses isolated in Asia between 2003 and 2004. All virus isolates replicated efficiently in inoculated ducks, and 22 were transmitted to susceptible contacts. Viruses replicated to higher levels in the trachea than in the cloaca of both inoculated and contact birds, suggesting that the digestive tract is not the main site of H5N1 influenza virus replication in ducks and that the fecal-oral route may no longer be the main transmission path. The virus isolates' pathogenicities varied from completely nonpathogenic to highly lethal and were positively correlated with tracheal virus titers. Nevertheless, the eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to naïve contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health.


2010 ◽  
Vol 84 (20) ◽  
pp. 10918-10922 ◽  
Author(s):  
Cássio Pontes Octaviani ◽  
Makoto Ozawa ◽  
Shinya Yamada ◽  
Hideo Goto ◽  
Yoshihiro Kawaoka

Reassortment is an important mechanism for the evolution of influenza viruses. Here, we coinfected cultured cells with the pandemic swine-origin influenza virus (S-OIV) and a contemporary H5N1 virus and found that these two viruses have high genetic compatibility. Studies of human lung cell lines indicated that some reassortants had better growth kinetics than their parental viruses. We conclude that reassortment between these two viruses can occur and could create pandemic H5N1 viruses.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e57894 ◽  
Author(s):  
Olivier Leymarie ◽  
Grégory Jouvion ◽  
Pierre-Louis Hervé ◽  
Christophe Chevalier ◽  
Valérie Lorin ◽  
...  

2007 ◽  
Vol 81 (23) ◽  
pp. 12911-12917 ◽  
Author(s):  
Nikolai V. Kaverin ◽  
Irina A. Rudneva ◽  
Elena A. Govorkova ◽  
Tatyana A. Timofeeva ◽  
Aleksandr A. Shilov ◽  
...  

ABSTRACT We mapped the hemagglutinin (HA) antigenic epitopes of a highly pathogenic H5N1 influenza virus on the three-dimensional HA structure by characterizing escape mutants of a recombinant virus containing A/Vietnam/1203/04 (H5N1) ΔHA and neuraminidase genes in the genetic background of A/Puerto Rico/8/34 (H1N1) virus. The mutants were selected with a panel of eight anti-HA monoclonal antibodies (MAbs), seven to A/Vietnam/1203/04 (H5N1) virus and one to A/Chicken/Pennsylvania/8125/83 (H5N2) virus, and the mutants’ HA genes were sequenced. The amino acid changes suggested three MAb groups: four MAbs reacted with the complex epitope comprising parts of the antigenic site B of H3 HA and site Sa of H1 HA, two MAbs reacted with the epitope corresponding to the antigenic site A in H3 HA, and two MAbs displayed unusual behavior: each recognized amino acid changes at two widely separate antigenic sites. Five changes were detected in amino acid residues not previously reported as changed in H5 escape mutants, and four others had substitutions not previously described. The HA antigenic structure differs substantially between A/Vietnam/1203/04 (H5N1) virus and the low-pathogenic A/Mallard/Pennsylvania/10218/84 (H5N2) virus we previously characterized (N. V. Kaverin et al., J. Gen. Virol. 83:2497-2505, 2002). The hemagglutination inhibition reactions of the MAbs with recent highly pathogenic H5N1 viruses were consistent with the antigenic-site amino acid changes but not with clades and subclades based on H5 phylogenetic analysis. These results provide information on the recognition sites of the MAbs widely used to study H5N1 viruses and demonstrate the involvement of the HA antigenic sites in the evolution of highly pathogenic H5N1 viruses, findings that can be critical for characterizing pathogenesis and vaccine design.


Sign in / Sign up

Export Citation Format

Share Document