scholarly journals RNA Helicase A Regulates the Replication of RNA Viruses

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 361
Author(s):  
Rui-Zhu Shi ◽  
Yuan-Qing Pan ◽  
Li Xing

The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.

2012 ◽  
Vol 80 (6) ◽  
pp. 1699-1706 ◽  
Author(s):  
Takashi Nagata ◽  
Kengo Tsuda ◽  
Naohiro Kobayashi ◽  
Mikako Shirouzu ◽  
Takanori Kigawa ◽  
...  

2020 ◽  
Vol 48 (7) ◽  
pp. 3906-3921 ◽  
Author(s):  
Volker Nitschko ◽  
Stefan Kunzelmann ◽  
Thomas Fröhlich ◽  
Georg J Arnold ◽  
Klaus Förstemann

Abstract RNA interference targets aberrant transcripts with cognate small interfering RNAs, which derive from double-stranded RNA precursors. Several functional screens have identified Drosophila blanks/lump (CG10630) as a facilitator of RNAi, yet its molecular function has remained unknown. The protein carries two dsRNA binding domains (dsRBD) and blanks mutant males have a spermatogenesis defect. We demonstrate that blanks selectively boosts RNAi triggered by dsRNA of nuclear origin. Blanks binds dsRNA via its second dsRBD in vitro, shuttles between nucleus and cytoplasm and the abundance of siRNAs arising at many sites of convergent transcription is reduced in blanks mutants. Since features of nascent RNAs - such as introns and transcription beyond the polyA site – contribute to the small RNA pool, we propose that Blanks binds dsRNA formed by cognate nascent RNAs in the nucleus and fosters its export to the cytoplasm for dicing. We refer to the resulting small RNAs as blanks exported siRNAs (bepsiRNAs). While bepsiRNAs were fully dependent on RNA binding to the second dsRBD of blanks in transgenic flies, male fertility was not. This is consistent with a previous report that linked fertility to the first dsRBD of Blanks. The role of blanks in spermatogenesis appears thus unrelated to its role in dsRNA export.


2010 ◽  
Vol 286 (7) ◽  
pp. 5328-5337 ◽  
Author(s):  
Arnaz Ranji ◽  
Nikolozi Shkriabai ◽  
Mamuka Kvaratskhelia ◽  
Karin Musier-Forsyth ◽  
Kathleen Boris-Lawrie

2021 ◽  
Author(s):  
Christine Roden ◽  
Yifan Dai ◽  
Ian Seim ◽  
Myungwoon Lee ◽  
Rachel Sealfon ◽  
...  

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.


1998 ◽  
Vol 72 (6) ◽  
pp. 4729-4736 ◽  
Author(s):  
Christian H. Gross ◽  
Stewart Shuman

ABSTRACT Vaccinia virus NPH-II is the prototypal RNA helicase of the DExH box protein family, which is defined by six shared sequence motifs. The contributions of conserved amino acids in motifs I (TGVGKTSQ), Ia (PRI), II (DExHE), and III (TAT) to enzyme activity were assessed by alanine scanning. NPH-II-Ala proteins were expressed in baculovirus-infected Sf9 cells, purified, and characterized with respect to their RNA helicase, nucleic acid-dependent ATPase, and RNA binding functions. Alanine substitutions at Lys-191 and Thr-192 (motif I), Arg-229 (motif Ia), and Glu-300 (motif II) caused severe defects in RNA unwinding that correlated with reduced rates of ATP hydrolysis. In contrast, alanine mutations at His-299 (motif II) and at Thr-326 and Thr-328 (motif III) elicited defects in RNA unwinding but spared the ATPase. None of the mutations analyzed affected the binding of NPH-II to RNA. These findings, together with previous mutational studies, indicate that NPH-II motifs I, Ia, II, and VI (QRxGRxGRxxxG) are essential for nucleoside triphosphate (NTP) hydrolysis, whereas motif III and the His moiety of the DExH-box serve to couple the NTPase and helicase activities. Wild-type and mutant NPH-II-Ala genes were tested for the ability to rescue temperature-sensitive nph2-tsviruses. NPH-II mutations that inactivated the phosphohydrolase in vitro were lethal in vivo, as judged by the failure to recover rescued viruses containing the Ala substitution. The NTPase activity was necessary, but not sufficient, to sustain virus replication, insofar as mutants for which NTPase was uncoupled from unwinding (H299A, T326A, and T328A) were also lethal. We conclude that the phosphohydrolase and helicase activities of NPH-II are essential for virus replication.


2018 ◽  
Author(s):  
Pravin Kumar Ankush Jagtap ◽  
Marisa Müller ◽  
Pawel Masiewicz ◽  
Sören von Bülow ◽  
Nele Merret Hollmann ◽  
...  

ABSTRACTMaleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAK RNA binding motifs. NMR titrations combined with filter binding experiments document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.


2003 ◽  
Vol 161 (2) ◽  
pp. 309-319 ◽  
Author(s):  
Michael Doyle ◽  
Michael F. Jantsch

The RNA-editing enzyme adenosine deaminase that acts on RNA (ADAR1) deaminates adenosines to inosines in double-stranded RNA substrates. Currently, it is not clear how the enzyme targets and discriminates different substrates in vivo. However, it has been shown that the deaminase domain plays an important role in distinguishing various adenosines within a given substrate RNA in vitro. Previously, we could show that Xenopus ADAR1 is associated with nascent transcripts on transcriptionally active lampbrush chromosomes, indicating that initial substrate binding and possibly editing itself occurs cotranscriptionally. Here, we demonstrate that chromosomal association depends solely on the three double-stranded RNA-binding domains (dsRBDs) found in the central part of ADAR1, but not on the Z-DNA–binding domain in the NH2 terminus nor the catalytic deaminase domain in the COOH terminus of the protein. Most importantly, we show that individual dsRBDs are capable of recognizing different chromosomal sites in an apparently specific manner. Thus, our results not only prove the requirement of dsRBDs for chromosomal targeting, but also show that individual dsRBDs have distinct in vivo localization capabilities that may be important for initial substrate recognition and subsequent editing specificity.


2004 ◽  
Vol 279 (50) ◽  
pp. 52447-52455 ◽  
Author(s):  
Garry P. Scarlett ◽  
Stuart J. Elgar ◽  
Peter D. Cary ◽  
Anna M. Noble ◽  
Robert L. Orford ◽  
...  

CBTF122is a subunit of theXenopusCCAAT box transcription factor complex and a member of a family of double-stranded RNA-binding proteins that function in both transcriptional and post-transcriptional control. Here we identify a region of CBTF122containing the double-stranded RNA-binding domains that is capable of binding either RNA or DNA. We show that these domains bind A-form DNA in preference to B-form DNA and that the -59 to -31 region of the GATA-2 promoter (anin vivotarget of CCAAT box transcription factor) adopts a partial A-form structure. Mutations in the RNA-binding domains that inhibit RNA binding also affect DNA bindingin vitro. In addition, these mutations alter the ability of CBTF122fusions with engrailed transcription repressor and VP16 transcription activator domains to regulate transcription of the GATA-2 genein vivo. These data support the hypothesis that the double-stranded RNA-binding domains of this family of proteins are important for their DNA binding bothin vitroandin vivo.


2020 ◽  
Vol 94 (18) ◽  
Author(s):  
Nikolay Kovalev ◽  
Judit Pogany ◽  
Peter D. Nagy

ABSTRACT Positive-strand RNA [(+)RNA] viruses are important pathogens of humans, animals, and plants and replicate inside host cells by coopting numerous host factors and subcellular membranes. To gain insights into the assembly of viral replicase complexes (VRCs) and dissect the roles of various lipids and coopted host factors, we have reconstituted Tomato bushy stunt virus (TBSV) replicase using artificial giant unilamellar vesicles (GUVs). We demonstrate that reconstitution of VRCs on GUVs with endoplasmic reticulum (ER)-like phospholipid composition results in a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)RNA viruses. TBSV VRCs assembled on GUVs provide significant protection of the double-stranded RNA (dsRNA) replication intermediate against the dsRNA-specific RNase III. The lipid compositions of GUVs have pronounced effects on in vitro TBSV replication, including (−) and (+)RNA synthesis. The GUV-based assay has led to the discovery of the critical role of phosphatidylserine in TBSV replication and a novel role for phosphatidylethanolamine in asymmetrical (+)RNA synthesis. The GUV-based assay also showed stimulatory effects by phosphatidylinositol-3-phosphate [PI(3)P] and ergosterol on TBSV replication. We demonstrate that eEF1A and Hsp70 coopted replicase assembly factors, Vps34 phosphatidylinositol 3-kinase (PI3K) and the membrane-bending ESCRT factors, are required for reconstitution of the active TBSV VRCs in GUVs, further supporting that the novel GUV-based in vitro approach recapitulates critical steps and involves essential coopted cellular factors of the TBSV replication process. Taken together, this novel GUV assay will be highly suitable to dissect the functions of viral and cellular factors in TBSV replication. IMPORTANCE Understanding the mechanism of replication of positive-strand RNA viruses, which are major pathogens of plants, animals, and humans, can lead to new targets for antiviral interventions. These viruses subvert intracellular membranes for virus replication and coopt numerous host proteins, whose functions during virus replication are not yet completely defined. To dissect the roles of various host factors in Tomato bushy stunt virus (TBSV) replication, we have developed an artificial giant unilamellar vesicle (GUV)-based replication assay. The GUV-based in vitro approach recapitulates critical steps of the TBSV replication process. GUV-based reconstitution of the TBSV replicase revealed the need for a complex mixture of phospholipids, especially phosphatidylserine and phosphatidylethanolamine, in TBSV replication. The GUV-based approach will be useful to dissect the functions of essential coopted cellular factors.


Sign in / Sign up

Export Citation Format

Share Document