scholarly journals Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures

2021 ◽  
Author(s):  
Christine Roden ◽  
Yifan Dai ◽  
Ian Seim ◽  
Myungwoon Lee ◽  
Rachel Sealfon ◽  
...  

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 361
Author(s):  
Rui-Zhu Shi ◽  
Yuan-Qing Pan ◽  
Li Xing

The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.


2018 ◽  
Author(s):  
Pravin Kumar Ankush Jagtap ◽  
Marisa Müller ◽  
Pawel Masiewicz ◽  
Sören von Bülow ◽  
Nele Merret Hollmann ◽  
...  

ABSTRACTMaleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAK RNA binding motifs. NMR titrations combined with filter binding experiments document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.


Author(s):  
Theodora Myrto Perdikari ◽  
Anastasia C. Murthy ◽  
Veronica H. Ryan ◽  
Scott Watters ◽  
Mandar T. Naik ◽  
...  

AbstractTightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and may assemble within viral factories, dynamic compartments formed within the host cells. Here, we examine the possibility that the multivalent RNA-binding nucleocapsid protein (N) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) compacts RNA via protein-RNA liquid-liquid phase separation (LLPS) and that N interactions with host RNA-binding proteins are mediated by phase separation. To this end, we created a construct expressing recombinant N fused to a N-terminal maltose binding protein tag which helps keep the oligomeric N soluble for purification. Using in vitro phase separation assays, we find that N is assembly-prone and phase separates avidly. Phase separation is modulated by addition of RNA and changes in pH and is disfavored at high concentrations of salt. Furthermore, N enters into in vitro phase separated condensates of full-length human hnRNPs (TDP-43, FUS, and hnRNPA2) and their low complexity domains (LCs). However, N partitioning into the LC of FUS, but not TDP-43 or hnRNPA2, requires cleavage of the solubilizing MBP fusion. Hence, LLPS may be an essential mechanism used for SARS-CoV-2 and other RNA viral genome packing and host protein co-opting, functions necessary for viral replication and hence infectivity.


2020 ◽  
Vol 48 (7) ◽  
pp. 3906-3921 ◽  
Author(s):  
Volker Nitschko ◽  
Stefan Kunzelmann ◽  
Thomas Fröhlich ◽  
Georg J Arnold ◽  
Klaus Förstemann

Abstract RNA interference targets aberrant transcripts with cognate small interfering RNAs, which derive from double-stranded RNA precursors. Several functional screens have identified Drosophila blanks/lump (CG10630) as a facilitator of RNAi, yet its molecular function has remained unknown. The protein carries two dsRNA binding domains (dsRBD) and blanks mutant males have a spermatogenesis defect. We demonstrate that blanks selectively boosts RNAi triggered by dsRNA of nuclear origin. Blanks binds dsRNA via its second dsRBD in vitro, shuttles between nucleus and cytoplasm and the abundance of siRNAs arising at many sites of convergent transcription is reduced in blanks mutants. Since features of nascent RNAs - such as introns and transcription beyond the polyA site – contribute to the small RNA pool, we propose that Blanks binds dsRNA formed by cognate nascent RNAs in the nucleus and fosters its export to the cytoplasm for dicing. We refer to the resulting small RNAs as blanks exported siRNAs (bepsiRNAs). While bepsiRNAs were fully dependent on RNA binding to the second dsRBD of blanks in transgenic flies, male fertility was not. This is consistent with a previous report that linked fertility to the first dsRBD of Blanks. The role of blanks in spermatogenesis appears thus unrelated to its role in dsRNA export.


2003 ◽  
Vol 161 (2) ◽  
pp. 309-319 ◽  
Author(s):  
Michael Doyle ◽  
Michael F. Jantsch

The RNA-editing enzyme adenosine deaminase that acts on RNA (ADAR1) deaminates adenosines to inosines in double-stranded RNA substrates. Currently, it is not clear how the enzyme targets and discriminates different substrates in vivo. However, it has been shown that the deaminase domain plays an important role in distinguishing various adenosines within a given substrate RNA in vitro. Previously, we could show that Xenopus ADAR1 is associated with nascent transcripts on transcriptionally active lampbrush chromosomes, indicating that initial substrate binding and possibly editing itself occurs cotranscriptionally. Here, we demonstrate that chromosomal association depends solely on the three double-stranded RNA-binding domains (dsRBDs) found in the central part of ADAR1, but not on the Z-DNA–binding domain in the NH2 terminus nor the catalytic deaminase domain in the COOH terminus of the protein. Most importantly, we show that individual dsRBDs are capable of recognizing different chromosomal sites in an apparently specific manner. Thus, our results not only prove the requirement of dsRBDs for chromosomal targeting, but also show that individual dsRBDs have distinct in vivo localization capabilities that may be important for initial substrate recognition and subsequent editing specificity.


Author(s):  
Jasmine Cubuk ◽  
Jhullian J. Alston ◽  
J. Jeremías Incicco ◽  
Sukrit Singh ◽  
Melissa D. Stuchell-Brereton ◽  
...  

AbstractThe SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


2004 ◽  
Vol 279 (50) ◽  
pp. 52447-52455 ◽  
Author(s):  
Garry P. Scarlett ◽  
Stuart J. Elgar ◽  
Peter D. Cary ◽  
Anna M. Noble ◽  
Robert L. Orford ◽  
...  

CBTF122is a subunit of theXenopusCCAAT box transcription factor complex and a member of a family of double-stranded RNA-binding proteins that function in both transcriptional and post-transcriptional control. Here we identify a region of CBTF122containing the double-stranded RNA-binding domains that is capable of binding either RNA or DNA. We show that these domains bind A-form DNA in preference to B-form DNA and that the -59 to -31 region of the GATA-2 promoter (anin vivotarget of CCAAT box transcription factor) adopts a partial A-form structure. Mutations in the RNA-binding domains that inhibit RNA binding also affect DNA bindingin vitro. In addition, these mutations alter the ability of CBTF122fusions with engrailed transcription repressor and VP16 transcription activator domains to regulate transcription of the GATA-2 genein vivo. These data support the hypothesis that the double-stranded RNA-binding domains of this family of proteins are important for their DNA binding bothin vitroandin vivo.


2000 ◽  
Vol 74 (21) ◽  
pp. 9946-9952 ◽  
Author(s):  
Jane C. Osborne ◽  
Richard M. Elliott

ABSTRACT The genome of Bunyamwera virus (BUN) (familyBunyaviridae, genus Bunyavirus) comprises three negative-sense RNA segments which act as transcriptional templates for the viral polymerase only when encapsidated by the nucleocapsid protein (N). Previous studies have suggested that the encapsidation signal may reside within the 5′ terminus of each segment. The BUN N protein was expressed as a 6-histidine-tagged fusion protein in Escherichia coli and purified by metal chelate chromatography. An RNA probe containing the 5′-terminal 32 and 3′-terminal 33 bases of the BUN S (small) genome segment was used to investigate binding by the N protein in vitro using gel mobility shift and filter binding assays. On acrylamide gels a number of discrete RNA-N complexes were resolved, and analysis of filter binding data indicated a degree of cooperativity in N protein binding. RNA-N complexes were resistant to digestion with up to 1 μg of RNase A per ml. Competition assays with a variety of viral and nonviral RNAs identified a region within the 5′ terminus of the BUN S segment for which N had a high preference for binding. This site may constitute the signal for initiation of encapsidation by N.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasmine Cubuk ◽  
Jhullian J. Alston ◽  
J. Jeremías Incicco ◽  
Sukrit Singh ◽  
Melissa D. Stuchell-Brereton ◽  
...  

AbstractThe SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


Sign in / Sign up

Export Citation Format

Share Document