scholarly journals Genetic Diversity and Molecular Epidemiology of Circulating Respiratory Syncytial Virus in Central Taiwan, 2008–2017

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Chun-Yi Lee ◽  
Yu-Ping Fang ◽  
Li-Chung Wang ◽  
Teh-Ying Chou ◽  
Hsin-Fu Liu

In this study, we investigated the molecular evolution and phylodynamics of respiratory syncytial virus (RSV) over 10 consecutive seasons (2008–2017) and the genetic variability of the RSV genotypes ON1 and BA in central Taiwan. The ectodomain region of the G gene was sequenced for genotyping. The nucleotide and deduced amino acid sequences of the second hypervariable region of the G protein in RSV ON1 and BA were analyzed. A total of 132 RSV-A and 81 RSV-B isolates were obtained. Phylogenetic analysis revealed that the NA1, ON1, and BA9 genotypes were responsible for the RSV epidemics in central Taiwan in the study period. For RSV-A, the NA1 genotype predominated during the 2008–2011 seasons. The ON1 genotype was first detected in 2011 and replaced NA1 after 2012. For RSV-B, the BA9 and BA10 genotypes cocirculated from 2008 to 2010, but the BA9 genotype has predominated since 2012. Amino acid sequence alignments revealed the continuous evolution of the G gene in the ectodomain region. The predicted N-glycosylation sites were relatively conserved in the ON1 (site 237 and 318) and BA9 (site 296 and 310) genotype strains. Our results contribute to the understanding and prediction of the temporal evolution of RSV at the local level.

Intervirology ◽  
2015 ◽  
Vol 58 (3) ◽  
pp. 172-180 ◽  
Author(s):  
Jelena Ivancic-Jelecki ◽  
Dubravko Forcic ◽  
Gordana Mlinaric-Galinovic ◽  
Goran Tesovic ◽  
Ana Nikic Hecer

Objective: Characterization of the phylogeny and diversity of human respiratory syncytial virus (HRSV) genotype ON1 that occurred during its early evolution (within the first 3.5 years since the detection of the first ON1 strains). ON1 strains have a 72-nucleotide-long in-frame duplication within the second hypervariable domain of the glycoprotein gene (HVR2). Methods: All available HVR2 sequences of strains belonging to the ON1 genotype published prior to June 20, 2014 were collected. Multiple sequence alignments, phylogeny, phylogeography, sequence clustering and putative protein analyses were performed. Results: The worldwide spread and diversification of ON1 strains are presented. Only in a minority of ON1 strains do the two replicas remain identical, and various ON1 strains possess common differences between the first and the second copy (segments A and B). Mutations of the progenitor sequence were more frequent in segment B, a higher overall diversity on the protein level and more putative glycosylation sites exist in segment B, and, unlike in segment A, positive selection acts on that protein region. Conclusions: The fast spread of the novel HRSV genotype ON1 has been accompanied by its rapid concurrent diversification. Differences in variability of the two replicas within HVR2 were detected, with C-terminal replica being more variable.


2020 ◽  
Vol 222 (1) ◽  
pp. 102-110
Author(s):  
Fabio Midulla ◽  
Greta Di Mattia ◽  
Raffaella Nenna ◽  
Carolina Scagnolari ◽  
Agnese Viscido ◽  
...  

Abstract Background A study of respiratory syncytial virus-A (RSV A) genotype ON1 genetic variability and clinical severity in infants hospitalized with bronchiolitis over 6 epidemic seasons (2012–2013 to 2017–2018) was carried out. Methods From prospectively enrolled term infants hospitalized for bronchiolitis, samples positive for RSV A ON1 (N = 139) were sequenced in the second half of the G gene. Patients’ clinical data were obtained from medical files and each infant was assigned a clinical severity score. ANOVA comparison and adjusted multinomial logistic regression were used to evaluate clinical severity score and clinical parameters. Results The phylogenetic analysis of 54 strains showed 3 distinct clades; sequences in the last 2 seasons differed from previous seasons. The most divergent and numerous cluster of 2017–2018 strains was characterized by a novel pattern of amino acid changes, some in antigenic sites. Several amino acid changes altered predicted glycosylation sites, with acquisition of around 10 new O-glycosylation sites. Clinical severity of bronchiolitis increased in 2016–2017 and 2017–2018 and changed according to the epidemic seasons only. Conclusions Amino acid changes in the hypervariable part of G protein may have altered functions and/or changed its immunogenicity, leading to an impact on disease severity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan C. Muñoz-Escalante ◽  
Andreu Comas-García ◽  
Sofía Bernal-Silva ◽  
Daniel E. Noyola

AbstractRespiratory syncytial virus (RSV) is a major cause of respiratory infections and is classified in two main groups, RSV-A and RSV-B, with multiple genotypes within each of them. For RSV-B, more than 30 genotypes have been described, without consensus on their definition. The lack of genotype assignation criteria has a direct impact on viral evolution understanding, development of viral detection methods as well as vaccines design. Here we analyzed the totality of complete RSV-B G gene ectodomain sequences published in GenBank until September 2018 (n = 2190) including 478 complete genome sequences using maximum likelihood and Bayesian phylogenetic analyses, as well as intergenotypic and intragenotypic distance matrices, in order to generate a systematic genotype assignation. Individual RSV-B genes were also assessed using maximum likelihood phylogenetic analyses and multiple sequence alignments were used to identify molecular markers associated to specific genotypes. Analyses of the complete G gene ectodomain region, sequences clustering patterns, and the presence of molecular markers of each individual gene indicate that the 37 previously described genotypes can be classified into fifteen distinct genotypes: BA, BA-C, BA-CC, CB1-THB, GB1-GB4, GB6, JAB1-NZB2, SAB1, SAB2, SAB4, URU2 and a novel early circulating genotype characterized in the present study and designated GB0.


1993 ◽  
Vol 291 (3) ◽  
pp. 787-792 ◽  
Author(s):  
R Z Zhang ◽  
T C Pan ◽  
R Timpl ◽  
M L Chu

cDNA clones encoding the alpha 1, alpha 2 and alpha 3 chains of mouse collagen VI have been isolated by screening cDNA libraries with the corresponding human probes. The composite cDNAs for the alpha 1, alpha 2, and alpha 3 chains are 2.5, 1.6 and 2.9 kb in size respectively. The alpha 1 and alpha 2 cDNAs encode the C-terminal portions of the chains as well as the entire 3′-untranslated regions, while the alpha 3 cDNAs encode a central segment of 959 amino acids flanking the triple-helical domain. The deduced amino acid sequences share 86-88% identity with the human counterparts and 67-73% identity with the chicken equivalents. Alignment of the deduced amino acid sequences of mouse, human and chicken collagens reveal that the key features of the protein, including the cysteine residues, imperfections in the Gly-Xaa-Xaa regions, Arg-Gly-Asp sequences and potential N-glycosylation sites, are mostly conserved.


2009 ◽  
Vol 5 (1) ◽  
pp. e1000254 ◽  
Author(s):  
Viviane F. Botosso ◽  
Paolo M. de A. Zanotto ◽  
Mirthes Ueda ◽  
Eurico Arruda ◽  
Alfredo E. Gilio ◽  
...  

2009 ◽  
Vol 83 (13) ◽  
pp. 6363-6374 ◽  
Author(s):  
Thi-Lan Tran ◽  
Nathalie Castagné ◽  
Virginie Dubosclard ◽  
Sylvie Noinville ◽  
Emmanuelle Koch ◽  
...  

ABSTRACT The respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus. To gain insight into its structural organization, M2-1 was produced as a recombinant protein in Escherichia coli and purified to >95% homogeneity by using a glutathione S-transferase (GST) tag. The GST-M2-1 fusion proteins were copurified with bacterial RNA, which could be eliminated by a high-salt wash. Circular dichroism analysis showed that M2-1 is largely α-helical. Chemical cross-linking, dynamic light scattering, sedimentation velocity, and electron microscopy analyses led to the conclusion that M2-1 forms a 5.4S tetramer of 89 kDa and ∼7.6 nm in diameter at micromolar concentrations. By using a series of deletion mutants, the oligomerization domain of M2-1 was mapped to a putative α-helix consisting of amino acid residues 32 to 63. When tested in an RSV minigenome replicon system using a luciferase gene as a reporter, an M2-1 deletion mutant lacking this region showed a significant reduction in RNA transcription compared to wild-type M2-1, indicating that M2-1 oligomerization is essential for the activity of the protein. We also show that the region encompassing amino acid residues 59 to 178 binds to P and RNA in a competitive manner that is independent of the phosphorylation status of M2-1.


Sign in / Sign up

Export Citation Format

Share Document