scholarly journals Immunogenicity of Varicella-Zoster Virus Glycoprotein E Formulated with Lipid Nanoparticles and Nucleic Immunostimulators in Mice

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 310
Author(s):  
Han Cao ◽  
Yunfei Wang ◽  
Ning Luan ◽  
Cunbao Liu

Theoretically, the subunit herpes zoster vaccine ShingrixTM could be used as a varicella vaccine that avoids the risk of developing shingles from vaccination, but bedside mixing strategies and the limited supply of the adjuvant component QS21 have made its application economically impracticable. With lipid nanoparticles (LNPs) that were approved by the FDA as vectors for severe acute respiratory syndrome coronavirus 2 vaccines, we designed a series of vaccines efficiently encapsulated with varicella-zoster virus glycoprotein E (VZV-gE) and nucleic acids including polyinosinic-polycytidylic acid (Poly I:C) and the natural phosphodiester CpG oligodeoxynucleotide (CpG ODN), which was approved by the FDA as an immunostimulator in a hepatitis B vaccine. Preclinical trial in mice showed that these LNP vaccines could induce VZV-gE IgG titers more than 16 times those induced by an alum adjuvant, and immunized serum could block in vitro infection completely at a dilution of 1:80, which indicated potential as a varicella vaccine. The magnitude of the cell-mediated immunity induced was generally more than 10 times that induced by the alum adjuvant, indicating potential as a zoster vaccine. These results showed that immunostimulatory nucleic acids together with LNPs have promise as safe and economical varicella and zoster vaccine candidates.

2021 ◽  
Author(s):  
Anne Gershon

A live attenuated vaccine against varicella (later also used to prevent zoster) was developed in 1974 by Takahashi and colleagues. Varicella vaccine was licensed for universal immunization of healthy children in the United States in 1995. It is also now used for this purpose in at least 15 additional countries all over the world. Varicella is disappearing in the US. Varicella vaccine has proven extremely safe and side effects are unusual, mild, and less serious than varicella or its complications. 85% of children are protected completely after 1 dose; the 15% who develop varicella despite immunization usually (but not always) have mild infections. These 15%, however, can transmit the wild type virus to others. Therefore, for optimal effect, 2 doses are required, mostly to address children who did not have an optimal primary immune response after the first dose. Waning immunity does not seem to pose a serious problem, but surveillance of vaccinees is continuing. It was demonstrated in 2005 that at a high dose of vaccine – 15 times higher than that used for prevention of varicella in children - zoster in adults can also be safely prevented. The live attenuated zoster vaccine is effective in approximately 50% of healthy individuals over age 60 who have had varicella in the past, and therefore have latent infection with varicella-zoster virus. It is given as one dose, but its effect runs out about 8 years after vaccination. In 2017, a new vaccine against zoster was also introduced. This is a subunit vaccine which does not contain contagious virus. It is even more effective than the older zoster vaccine and is over 95% effective in adults 50–≥70 years of age in preventing zoster and post herpetic neuralgia.


2000 ◽  
Vol 145 (1) ◽  
pp. 85-97 ◽  
Author(s):  
A. Vafai ◽  
B. Forghani ◽  
D. Kilpatrick ◽  
J. Ling ◽  
V. Shankar

2014 ◽  
Vol 21 (9) ◽  
pp. 1288-1291 ◽  
Author(s):  
Jeffrey I. Cohen ◽  
Mir A. Ali ◽  
Ahmad Bayat ◽  
Sharon P. Steinberg ◽  
Hosun Park ◽  
...  

ABSTRACTA high-throughput test to detect varicella-zoster virus (VZV) antibodies in varicella vaccine recipients is not currently available. One of the most sensitive tests for detecting VZV antibodies after vaccination is the fluorescent antibody to membrane antigen (FAMA) test. Unfortunately, this test is labor-intensive, somewhat subjective to read, and not commercially available. Therefore, we developed a highly quantitative and high-throughput luciferase immunoprecipitation system (LIPS) assay to detect antibody to VZV glycoprotein E (gE). Tests of children who received the varicella vaccine showed that the gE LIPS assay had 90% sensitivity and 70% specificity, a viral capsid antigen enzyme-linked immunosorbent assay (ELISA) had 67% and 87% specificity, and a glycoprotein ELISA (not commercially available in the United States) had 94% sensitivity and 74% specificity compared with the FAMA test. The rates of antibody detection by the gE LIPS and glycoprotein ELISA were not statistically different. Therefore, the gE LIPS assay may be useful for detecting VZV antibodies in varicella vaccine recipients. (This study has been registered at ClinicalTrials.gov under registration no. NCT00921999.)


Sign in / Sign up

Export Citation Format

Share Document