scholarly journals Efficacy of SAT2 Foot-and-Mouth Disease Vaccines Formulated with Montanide ISA 206B and Quil-A Saponin Adjuvants

Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 996
Author(s):  
Ntungufhadzeni M. Rathogwa ◽  
Katherine A. Scott ◽  
Pamela Opperman ◽  
Jacques Theron ◽  
Francois F. Maree

The effective control of foot-and-mouth disease (FMD) relies strongly on the separation of susceptible and infected livestock or susceptible livestock and persistently infected wildlife, vaccination, and veterinary sanitary measures. Vaccines affording protection against multiple serotypes for longer than six months and that are less reliant on the cold chain during handling are urgently needed for the effective control of FMD in endemic regions. Although much effort has been devoted to improving the immune responses elicited through the use of modern adjuvants, their efficacy is dependent on the formulation recipe, target species and administration route. Here we compared and evaluated the efficacy of two adjuvant formulations in combination with a structurally stabilized SAT2 vaccine antigen, designed to have improved thermostability, antigen shelf-life and longevity of antibody response. Protection mediated by the Montanide ISA 206B-adjuvanted or Quil-A Saponin-adjuvanted SAT2 vaccines were comparable. The Montanide ISA 206B-adjuvanted vaccine elicited a higher SAT2 neutralizing antibody response and three times higher levels of systemic IFN-γ responses at 14- and 28-days post-vaccination (dpv) were observed compared to the Quil-A Saponin-adjuvanted vaccine group. Interestingly, serum antibodies from the immunized animals reacted similarly to the parental vaccine virus and viruses containing mutations in the VP2 protein that simulate antigenic drift in nature.

2019 ◽  
Vol 9 (2) ◽  
pp. 244-251
Author(s):  
T. Anitha Sironmani

Background: Foot and mouth disease (FMD) is caused by a virus of the genus Aphthovirus, family Picornaviridae which includes several members of medical importance, Multiple subtypes or antigenic variants within each serotype, which make the vaccine from one serotype does not confer protection against the other serotype. Methods: Green synthesized silver nanoparticles were functionalized with FMDV antigen /antibody. The functionalized silver nanoparticles were characterized by UV -Visible spectrophotometer, Fluorescence Spectrophotometer etc. Immunomodulation study, efficacy and toxicity tests on the final product were carried out. Results: The protein profile after immunoprecipitation with AntiFMD antibody analysed on a 12.5% SDS-PAGE which corresponded to the viral proteins. The western blot analysis confirmed the same pattern. When the infected mice were treated with functionalised silver nanoparticles, all mice were recovered from the disease within 12 hrs. The field trial of these nanoformulations showed 100% recovery of the animals with minimum neutralizing antibody without any other physiological problems. Conclusion: Surface modification of silver nanoparticles can create multifunctional materials with potential applications. Nanoformulations developed by functionalizing whole FMD viral protein /antibody with that of silver nanoparticles, elicite an optimal immuno-protective response and as diagnostic agent against foot and mouth disease causing virus The easy method of preparation of nanoparticle, the flexibility of functionalization techniques, long shelf life without cold chain protection and minimum single low dosage reveals the feasibility of this nanoformulation applications ranging from prophylactic vaccines, diagnostics, therapy for all infections leading to autoimmune diseases.


1995 ◽  
Author(s):  
Marvin J. Grubman ◽  
Yehuda Stram ◽  
Peter W. Mason ◽  
Hagai Yadin

Foot-and-mouth disease (FMD), a highly infectious viral disease of cloven-hoofed animals, is economically the most important disease of domestic animals. Although inactivated FMD vaccines have been succesfully used as part of comprehensive eradication programs in Western Europe, there are a number of concerns about their safety. In this proposal, we have attempted to develop a new generation of FMD vaccines that addresses these concerns. Specifically we have cloned the region of the viral genome coding for the structural proteins and the proteinase responsible for processing of the structural protein precursor into both a DNA vector and a replication-deficient human adenovirus. We have demonstrated the induction of an FMDV-specific immune response and a neutralizing antibody response with the DNA vectors in mice, but preliminary potency and efficacy studies in swine are variable. However, the adenovirus vector induces a significant and long-lived neutralizing antibody response in mice and most importantly a neutralizing and protective response in swine. These results suggest that the empty capsid approach is a potential alternative to the current vaccination strategy.


Sign in / Sign up

Export Citation Format

Share Document