scholarly journals Multi-Objective Operation of Cascade Hydropower Reservoirs Using TOPSIS and Gravitational Search Algorithm with Opposition Learning and Mutation

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2040 ◽  
Author(s):  
Feng ◽  
Liu ◽  
Jiang ◽  
Luo ◽  
Miao

In this research, a novel enhanced gravitational search algorithm (EGSA) is proposed to resolve the multi-objective optimization model, considering the power generation of a hydropower enterprise and the peak operation requirement of a power system. In the proposed method, the standard gravity search algorithm (GSA) was chosen as the fundamental execution framework; the opposition learning strategy was adopted to increase the convergence speed of the swarm; the mutation search strategy was chosen to enhance the individual diversity; the elastic-ball modification strategy was used to promote the solution feasibility. Additionally, a practical constraint handling technique was introduced to improve the quality of the obtained agents, while the technique for order preference by similarity to an ideal solution method (TOPSIS) was used for the multi-objective decision. The numerical tests of twelve benchmark functions showed that the EGSA method could produce better results than several existing evolutionary algorithms. Then, the hydropower system located on the Wu River of China was chosen to test the engineering practicality of the proposed method. The results showed that the EGSA method could obtain satisfying scheduling schemes in different cases. Hence, an effective optimization method was provided for the multi-objective operation of hydropower system.

Author(s):  
Xiaohui Yuan ◽  
Zhihuan Chen ◽  
Yanbin Yuan ◽  
Yuehua Huang ◽  
Xiaopan Zhang

A novel strength Pareto gravitational search algorithm (SPGSA) is proposed to solve multi-objective optimization problems. This SPGSA algorithm utilizes the strength Pareto concept to assign the fitness values for agents and uses a fine-grained elitism selection mechanism to keep the population diversity. Furthermore, the recombination operators are modeled in this approach to decrease the possibility of trapping in local optima. Experiments are conducted on a series of benchmark problems that are characterized by difficulties in local optimality, nonuniformity, and nonconvexity. The results show that the proposed SPGSA algorithm performs better in comparison with other related works. On the other hand, the effectiveness of two subtle means added to the GSA are verified, i.e. the fine-grained elitism selection and the use of SBX and PMO operators. Simulation results show that these measures not only improve the convergence ability of original GSA, but also preserve the population diversity adequately, which enables the SPGSA algorithm to have an excellent ability that keeps a desirable balance between the exploitation and exploration so as to accelerate the convergence speed to the true Pareto-optimal front.


2015 ◽  
Vol 773-774 ◽  
pp. 277-281 ◽  
Author(s):  
Noor Hafizah Amer ◽  
Nurhidayati Ahmad ◽  
Amar Faiz Zainal Abidin

Compression spring is one of the most common mechanical componet being used in most mechanisms. Many criteria and constraints should be considered in designing and specifying the spring dimensions. Therefore, it has been one of the standard case studies considered to test a new optimisation algorithm. This paper introduced an optimization method named Gravitational search Algorithm (GSA) to solve the problem of weight minimization of spring. From previous studies, weight minimization of a spring has been investigated by many researcher using various optimization algorithm technique. The result of this study were compared to one of the previous studies using Particle Swarm Optimization (PSO) algorithm. Also, parametric studies were conducted to select the best values of GSA parameters, beta and epsilon. From the results obtained, it was observed that the optimum dimensions and weight obtained by GSA are better than the values obtained by PSO. The best values of beta and epsilon was found to be 0.6 and 0.01 respectively.


2018 ◽  
Vol 3 (1) ◽  
pp. 33
Author(s):  
Erkan Ülker ◽  
İsmail Babaoğlu

By providing great flexibility non-uniform rational B-spline (NURBS) curves and surfaces are reason of preferability on areas like computer aided design, medical imaging and computer graphics. Knots, control points and weights provide this flexibility. Computation of these parameters makes the problem as a non-linear combinational optimization problem on a process of reverse engineering. The ability of solving these problems using meta-heuristics instead of conventional methods attracts researchers. In this paper, NURBS curve estimation is carried out by a novel optimization method namely gravitational search algorithm. Both knots and knots together weights simultaneous optimization process is implemented by using research agents. The high performance of the proposed method on NURBS curve fitting is showed by obtained results.Keywords: Non-uniform rational B-spline, gravitational search algorithm, meta-heuristic


Sign in / Sign up

Export Citation Format

Share Document