scholarly journals Quantile Mapping Bias Correction on Rossby Centre Regional Climate Models for Precipitation Analysis over Kenya, East Africa

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 801 ◽  
Author(s):  
Brian Ayugi ◽  
Guirong Tan ◽  
Niu Ruoyun ◽  
Hassen Babaousmail ◽  
Moses Ojara ◽  
...  

This study uses the quantile mapping bias correction (QMBC) method to correct the bias in five regional climate models (RCMs) from the latest output of the Rossby Center Climate Regional Model (RCA4) over Kenya. The outputs were validated using various scalar metrics such as root-mean-square difference (RMSD), mean absolute error (MAE), and mean bias. The study found that the QMBC algorithm demonstrates varying performance among the models in the study domain. The results show that most of the models exhibit reasonable improvement after corrections at seasonal and annual timescales. Specifically, the European Community Earth-System (EC-EARTH) and Commonwealth Scientific and Industrial Research Organization (CSIRO) models depict remarkable improvement as compared to other models. On the contrary, the Institute Pierre Simon Laplace Model CM5A-MR (IPSL-CM5A-MR) model shows little improvement across the rainfall seasons (i.e., March–May (MAM) and October–December (OND)). The projections forced with bias-corrected historical simulations tallied observed values demonstrate satisfactory simulations as compared to the uncorrected RCMs output models. This study has demonstrated that using QMBC on outputs from RCA4 is an important intermediate step to improve climate data before performing any regional impact analysis. The corrected models may be used in projections of drought and flood extreme events over the study area.

Author(s):  
Brian Ayugi ◽  
Guirong Tan ◽  
Rouyun Niu ◽  
Hassen Babaousmail ◽  
Moses Ojara ◽  
...  

Accurate assessment and projections of extreme climate events requires the use of climate datasets with no or minimal error. This study uses quantile mapping bias correction (QMBC) method to correct the bias of five Regional Climate Models (RCMs) from the latest output of Rossby Climate Model Center (RCA4) over Kenya, East Africa. The outputs were validated using various scalar metrics such as Root Mean Square Difference (RMSD), Mean Absolute Error (MAE) and mean Bias. The study found that the QMBC algorithm demonstrate varying performance among the models in the study domain. The results show that most of the models exhibit significant improvement after corrections at seasonal and annual timescales. Specifically, the European community Earth-System (EC-EARTH) and Commonwealth Scientific and Industrial Research Organization (CSIRO) models depict exemplary improvement as compared to other models. On the contrary, the Institute Pierre Simon Laplace Model CM5A-MR (IPSL-CM5A-MR) model show little improvement across various timescales (i.e. March-April-May (MAM) and October-November-December (OND)). The projections forced with bias corrected historical simulations tallied observed values demonstrate satisfactory simulations as compared to the uncorrected RCMs output models. This study has demonstrated that using QMBC on outputs from RCA4 is an important intermediate step to improve climate data prior to performing any regional impact analysis. The corrected models can be used for projections of drought and flood extreme events over the study area. This study analysis is crucial from the sustainable planning for adaptation and mitigation of climate change and disaster risk reduction perspective.


2017 ◽  
Vol 8 (3) ◽  
pp. 889-900 ◽  
Author(s):  
Manolis G. Grillakis ◽  
Aristeidis G. Koutroulis ◽  
Ioannis N. Daliakopoulos ◽  
Ioannis K. Tsanis

Abstract. Bias correction of climate variables is a standard practice in climate change impact (CCI) studies. Various methodologies have been developed within the framework of quantile mapping. However, it is well known that quantile mapping may significantly modify the long-term statistics due to the time dependency of the temperature bias. Here, a method to overcome this issue without compromising the day-to-day correction statistics is presented. The methodology separates the modeled temperature signal into a normalized and a residual component relative to the modeled reference period climatology, in order to adjust the biases only for the former and preserve the signal of the later. The results show that this method allows for the preservation of the originally modeled long-term signal in the mean, the standard deviation and higher and lower percentiles of temperature. To illustrate the improvements, the methodology is tested on daily time series obtained from five Euro CORDEX regional climate models (RCMs).


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


Climate ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 18 ◽  
Author(s):  
Beáta Szabó-Takács ◽  
Aleš Farda ◽  
Petr Skalák ◽  
Jan Meitner

Our goal was to investigate the influence of bias correction methods on climate simulations over the European domain. We calculated the Köppen−Geiger climate classification using five individual regional climate models (RCM) of the ENSEMBLES project in the European domain during the period 1961−1990. The simulated precipitation and temperature data were corrected using the European daily high-resolution gridded dataset (E-OBS) observed data by five methods: (i) the empirical quantile mapping of precipitation and temperature, (ii) the quantile mapping of precipitation and temperature based on gamma and Generalized Pareto Distribution of precipitation, (iii) local intensity scaling, (iv) the power transformation of precipitation and (v) the variance scaling of temperature bias corrections. The individual bias correction methods had a significant effect on the climate classification, but the degree of this effect varied among the RCMs. Our results on the performance of bias correction differ from previous results described in the literature where these corrections were implemented over river catchments. We conclude that the effect of bias correction may depend on the region of model domain. These results suggest that distribution free bias correction approaches are the most suitable for large domain sizes such as the pan-European domain.


2021 ◽  
Vol 22 (4) ◽  
pp. 407-418
Author(s):  
SHWETA PANJWANI ◽  
S. NARESH KUMAR ◽  
LAXMI AHUJA

Global and regional climate models are reported to have inherent bias in simulating the observed climatology of a region. This bias of climate models is the major source of uncertainties in climate change impact assessments. Therefore, use of bias corrected simulated climate data is important. In this study, the bias corrected climate data for 30 years’ period (1976-2005) from selected common fourGCMs and RCMs for six Indian locations are compared with the respective observed data of India Meteorological Department. The analysis indicated that the RCMs performance is much better than GCMs after bias correction for minimum and maximum temperatures. Also, RCMs performance is better than GCMs in simulating extreme temperatures. However, the selected RCMs and GCMs are found to either over estimate or under estimate the rainfall despite bias correction and also overestimated the rainfall extremes for selected Indian locations. Based on the overall performance of four models for the six locations, it was found that the GFDL_ESM2M and NORESM1-M RCMs performed comparatively better than CSIRO and IPSL models. After bias correction, the RCMs could represent the observed climatology better than the GCMs. And these RCMs viz., GFDL_ESM2M and NORESM1-M can be usedindividually after bias correction in the climate change assessment studies for the selected regions.


2021 ◽  
Author(s):  
Michael Matiu ◽  
Florian Hanzer

Abstract. Mountain seasonal snow cover is undergoing major changes due to global climate change. Assessments of future snow cover usually rely on physical based models, and often include post-processed meteorology. Alternatively, here we propose a direct statistical adjustment of snow cover fraction from regional climate models by using long-term remote sensing observations. We compared different bias correction routines (delta change, quantile mapping, and quantile delta mapping) and explore a downscaling based on historical observations for the Greater Alpine Region in Europe. All bias correction methods adjust for systematic biases, for example due to topographic smoothing, and reduce model spread in future projections. Averaged over the study region and whole year, snow cover fraction decreases from 12.5 % in 2000–2020 to 10.4 (8.9, 11.5; model spread) % in 2071–2100 under RCP2.6, and 6.4 (4.1, 7.8) % under RCP8.5. In addition, changes strongly depended on season and altitude. The comparison of the statistical downscaling to a high-resolution physical based model yields similar results for the altitude range covered by the climate models, but different altitudinal gradients of change above and below. We found trend-preserving bias correction methods (delta change, quantile delta mapping) more plausible for snow cover fraction than quantile mapping. Downscaling showed potential but requires further research. Since climate model and remote sensing observations are available globally, the proposed methods are potentially widely applicable, but are limited to snow cover fraction only.


2021 ◽  
Vol 21 (4) ◽  
pp. 434-443
Author(s):  
Satyanarayana Tani ◽  
Andreas Gobiet

The potential of quantile mapping (QM) as a tool for bias correction of precipitation extremes simulated by regional climate models (RCMs) is investigated in this study. We developed an extended version of QM to improve the quality of bias-corrected extreme precipitation events. The extended version aims to exploit the advantages of both non-parametric methods and extreme value theory. We evaluated QM by applying it to a small ensemble of hindcast simulations, performed with RCMs at six different locations in Europe. We examined the quality of both raw and bias-corrected simulations of precipitation extremes using the split sample and cross-validation approaches. The split-sample approach mimics the application to future climate scenarios, while the cross-validation framework is designed to analyse “new extremes”, that is, events beyond the range of calibration of QM. We demonstrate that QM generally improves the simulation of precipitation extremes, compared to raw RCM results, but still tends to present unstable behaviour at higher quantiles. This instability can be avoided by carefully imposing constraints on the estimation of the distribution of extremes. The extended version of the bias-correction method greatly improves the simulation of precipitation extremes in all cases evaluated here. In particular, extremes in the classical sense and new extremes are both improved. The proposed approach is shown to provide a better representation of the climate change signal and can thus be expected to improve extreme event response for cases such as floods in bias-corrected simulations, a development of importance in various climate change impact assessments. Our results are encouraging for the use of QM for RCM precipitation post-processing in impact studies where extremes are of relevance.


2019 ◽  
Vol 58 (12) ◽  
pp. 2617-2632 ◽  
Author(s):  
Qifen Yuan ◽  
Thordis L. Thorarinsdottir ◽  
Stein Beldring ◽  
Wai Kwok Wong ◽  
Shaochun Huang ◽  
...  

AbstractIn applications of climate information, coarse-resolution climate projections commonly need to be downscaled to a finer grid. One challenge of this requirement is the modeling of subgrid variability and the spatial and temporal dependence at the finer scale. Here, a postprocessing procedure for temperature projections is proposed that addresses this challenge. The procedure employs statistical bias correction and stochastic downscaling in two steps. In the first step, errors that are related to spatial and temporal features of the first two moments of the temperature distribution at model scale are identified and corrected. Second, residual space–time dependence at the finer scale is analyzed using a statistical model, from which realizations are generated and then combined with an appropriate climate change signal to form the downscaled projection fields. Using a high-resolution observational gridded data product, the proposed approach is applied in a case study in which projections of two regional climate models from the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) ensemble are bias corrected and downscaled to a 1 km × 1 km grid in the Trøndelag area of Norway. A cross-validation study shows that the proposed procedure generates results that better reflect the marginal distributional properties of the data product and have better consistency in space and time when compared with empirical quantile mapping.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


Sign in / Sign up

Export Citation Format

Share Document