scholarly journals A New Set of Local Indices Applied to a Water Network through Demand and Pressure Driven Analysis (DDA and PDA)

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2210 ◽  
Author(s):  
Marco Amos Bonora ◽  
Fabio Caldarola ◽  
Mario Maiolo

In the analysis of drinking Water Distribution Networks (WDNs), performance indices are widely used tools for obtaining synthetic information about the WDN operating regime (pressures and flows). This paper presents applications of a series of local surplus indices that act in a new mathematical framework. This framework allows reworking many well-known performance and energetic indices and simultaneously allowing analysis of specific aspects of the WDN. The analyses are carried out using different resolutive hydraulic approaches: the Demand-Driven Analysis (DDA) and the Pressure-Driven Analysis (PDA), typical of software such as EPANET and WaterNetGen. The authors analyse the hypotheses necessary for the application of these models, and how these influence the results of both the hydraulic modeling and the resilience indices assessment. In particular, two resilience indices are reformulated through the new local surplus indices and all of them are then simulated in different conditions for a water network known in literature as the Kang and Lansey WDN. The solving model assumption effects are deepen, reporting graphical and numerical results for different consumption scenarios and the different hydraulic approaches used.

2015 ◽  
Vol 16 (3) ◽  
pp. 599-610 ◽  
Author(s):  
Ho Min Lee ◽  
Do Guen Yoo ◽  
Doosun Kang ◽  
Hwandon Jun ◽  
Joong Hoon Kim

The hydraulic analysis of water distribution networks (WDNs) is divided into two approaches: namely, a demand-driven analysis (DDA) and a pressure-driven analysis (PDA). In the DDA, the basic assumption is that the nodal demand is fully supplied irrespective of the nodal pressure, which is mainly suitable for normal operating conditions. However, in abnormal conditions, such as pipe failures or unexpected increase in demand, the DDA approach may cause unrealistic results, such as negative pressure. To address the shortcomings of DDA, PDA has been considered in a number of studies. For PDA, however, the head-outflow relation (HOR) should be given, which is known to contain a high degree of uncertainty. Here, the DDA-based simulator, EPANET2 was modified to develop a PDA model simulating pressure deficient conditions and a Monte Carlo simulation (MCS) was performed to consider the quantitative uncertainty in HOR. The developed PDA model was applied to two networks (a well-known benchmark system and a real-life WDN) and the results showed that the proposed model is superior to other reported models when dealing with negative pressure under abnormal conditions. In addition, the MCS-based sensitivity analysis presents the ranges of pressure and available discharge, quantifying service reliability of water networks.


2021 ◽  
Vol 147 (5) ◽  
pp. 06021005
Author(s):  
Nikolai B. Gorev ◽  
Vyacheslav N. Gorev ◽  
Inna F. Kodzhespirova ◽  
Igor A. Shedlovsky ◽  
P. Sivakumar

2020 ◽  
Vol 10 (9) ◽  
pp. 3029 ◽  
Author(s):  
Attilio Fiorini Morosini ◽  
Sina Shaffiee Haghshenas ◽  
Sami Shaffiee Haghshenas ◽  
Zong Woo Geem

Investigation of Water Distribution Networks (WDNs) is considered a challenging task due to the unpredicted and uncertain conditions in water engineering. When in a WDN, a pipe failure occurs, and shut-off valves to isolate the broken pipe to allow repairing works are activated. In these new conditions, the hydraulic parameters in the network are modified because the topology of the entire system changes. If the head becomes inadequate, the Pressure Driven Analysis (PDA) is the correct approach to evaluate the performance of water networks. Hence, in the present study, the water distribution system was evaluated in pressure-driven conditions for 100 different scenarios and then using a type of neural network called Group Method of Data Handling (GMDH) as a stochastic technique. For this purpose, several most notable parameters including the base demand, pressure, and alpha (the percentage of effective supplied flow) were calculated using simulations based on a PDA approach and applied to the water distribution network of Praia a Mare in Southern Italy. In the second stage, the output parameters were used in a developed binary classification model. Finally, the obtained results showed that the GMDH algorithm can be applied as a powerful tool for modeling water distribution networks.


2021 ◽  
Vol 3 (01) ◽  
pp. 01-11
Author(s):  
Henrique Da Silva Pizzo ◽  
João Paulo De Carvalho Ignácio ◽  
Marcus Vinicius Do Nascimento

The article intends to present the validation stage of a software to model and simulate hydraulic networks for water distribution, the SCALER, through its application to a real system, with many branches, with a model previously developed and verified using the EPANET software. SCALER was developed in 2020 and 2021 and, until then, had only been applied to networks with a relatively small number of branches. After discussing topics related to hydraulic modeling of distribution networks, techniques and applications, a brief review of the fundamentals of SCALER is carried out, passing on to its application to the case at hand, which is the Vila Joaniza community, in the municipality of Rio de Janeiro. Data from image, scheme and table are used to assist in the description of the local situation and respective distribution network, with the objective of assessing whether the nodal pressures obtained by SCALER are sufficiently similar to those obtained by EPANET, in order to ensure the proper functioning of the software. After this step, and the calculations have been made by the program, an operation screen, the generated graph of the local situation and a table with the comparison of absolute and percentage deviations between the nodal pressures resulting from the SCALER and those obtained with the EPANET are inserted, confirming that the deviation values are quite small, which validates SCALER as a software also applicable to networks with many branches.


Sign in / Sign up

Export Citation Format

Share Document