scholarly journals A New Approach in Determining the Decadal Common Trends in the Groundwater Table of the Watershed of Lake “Neusiedlersee”

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 290
Author(s):  
Norbert Magyar ◽  
István Gábor Hatvani ◽  
Miklós Arató ◽  
Balázs Trásy ◽  
Alfred Paul Blaschke ◽  
...  

Shallow groundwater is one of the primary sources of fresh water, providing river base-flow and root-zone soil water between precipitation events. However, with urbanization and the increase in demand for water for irrigation, shallow groundwater bodies are being endangered. In the present study, 101 hydrographs of shallow groundwater monitoring wells from the watershed of the westernmost brackish lake in Europe were examined for the years 1997–2012 using a combination of dynamic factor and cluster analyses. The aims were (i) the determination of the main driving factors of the water table, (ii) the determination of the spatial distribution and importance of these factors, and (iii) the estimation of shallow groundwater levels using the obtained model. Results indicate that the dynamic factor models were capable of accurately estimating the hydrographs (avg. mean squared error = 0.29 for standardized water levels), meaning that the two driving factors identified (evapotranspiration and precipitation) describe most of the variances of the fluctuations in water level. Both meteorological parameters correlated with an obtained dynamic factor (r = −0.41 for evapotranspiration & r = 0.76 for precipitation). The strength of these effects displayed a spatial pattern, as did the factor loadings. On this basis, the monitoring wells could be objectively distinguished into two groups using hierarchical cluster analysis and verified by linear discriminant analysis in 98% of the cases. This grouping in turn was determined to be primarily related to the elevation and the geology of the area. It can be concluded that the application of the data analysis toolset suggested herein permits a more efficient, objective, and reproducible delineation of the primary driving factors of the shallow groundwater table in the area. Additionally, it represents an effective toolset for the forecasting of water table variations, a quality which, in the view of the likelihood of further climate change to come, is a distinctive advantage. The knowledge of these factors is crucial to a better understanding of the hydrogeological processes that characterize the water table and, thus, to developing a proper water resource management strategy for the area.

Pollutants ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 66-86
Author(s):  
Simone Varisco ◽  
Giovanni Pietro Beretta ◽  
Luca Raffaelli ◽  
Paola Raimondi ◽  
Daniele Pedretti

Groundwater table rising (GTR) represents a well-known issue that affects several urban and agricultural areas of the world. This work addresses the link between GTR and the formation of solute plumes from contaminant sources that are located in the vadose zone, and that water table rising may help mobilize with time. A case study is analyzed in the stratified pyroclastic-alluvial aquifer near Naples (Italy), which is notoriously affected by GTR. A dismissed chemical factory generated a solute plume, which was hydraulically confined by a pump-and-treat (P&T) system. Since 2011, aqueous concentrations of 1,1-dichloroethene (1,1-DCE) have been found to exceed regulatory maximum concentration levels in monitoring wells. It has been hypothesized that a 1,1-DCE source may occur as buried waste that has been flushed with time under GTR. To elucidate this hypothesis and reoptimize the P&T system, flow and transport numerical modeling analysis was developed using site-specific data. The results indicated that the formulated hypothesis is indeed plausible. The model shows that water table peaks were reached in 2011 and 2017, which agree with the 1,1-DCE concentration peaks observed in the site. The model was also able to capture the simultaneous decrease in the water table levels and concentrations between 2011 and 2014. Scenario-based analysis suggests that lowering the water table below the elevation of the hypothesized source is potentially a cost-effective strategy to reschedule the pumping rates of the P&T system.


1985 ◽  
Vol 1985 (1) ◽  
pp. 267-271 ◽  
Author(s):  
Joseph T. McNally ◽  
Craig G. Robertson ◽  
Ned E. Wehler

ABSTRACT A leak from a buried pipeline resulted in the loss of approximately 30,000 gallons of No. 2 fuel oil beneath a housing development in suburban New Castle County, Delaware. After seeping to the water table, the resultant hydrocarbon plume threatened the homes as well as a downgradient stream and an irrigation pond. Site geology consisted of a highly-weathered metamorphic rock overlain by varying thicknesses of fill material. A steep water table gradient existed; the depth to the water table ranged between 6 and 17 feet below grade. Two-inch monitoring wells were installed in public easements and the back yards of private residences. The extent of the oil plume was determined by measuring product thicknesses, which ranged from a few inches to over 5 feet, in monitoring wells. To establish hydrodynamic control and prevent further migration of the plume, two eight-inch recovery wells were drilled and configured with water-table depression pumps. For product recovery, Auto-Skimmers were selected because of the variable water levels and need to leave no measurable product thickness in the wells. The potential for product recovery in other parts of the site was determined by performing unattended one-week recovery tests in the two-inch monitoring wells under non-pumping conditions using an Auto-Skimmer. Based on these results, three additional six-inch recovery wells were drilled. The recovery operation successfully halted the advancement of the contaminant plume and protected the downgradient stream and irrigation pond. In addition, more than 3,000 gallons of fuel oil were recovered from the subsurface. After 18 months, the recovery equipment was removed and only periodic monitoring of the monitoring wells was required.


2021 ◽  
Author(s):  
Dina Ragab Desouki Abdelmoneim

Sustainable water resource management is a crucial national and global issue (Currell et al., 2012). In arid areas, groundwater is often the major source of water or at least a crucial supplement to other freshwater resources for agriculture, industry and domestic consumption (Vrba and Renaud, 2016). The complexity associated with groundwater-surface water interactions creates uncertainty about water resource sustainability in semi-arid environments, especially with urbanization and population growth. Flood irrigation in the early 1900s increased the shallow groundwater table in the Treasure Valley (TV), but with increasing irrigation efficiencies, they have been declining since the 1960s with a mean decline rate of about 2.9-3.9x10^-9 (m/s) (Contor et al., 2011). Quantifying how much surface water is being exchanged with the shallow groundwater table through canals in the TV is necessary for gaining a better understanding of groundwater-surface water interactions in this heavily managed system. This knowledge would help evaluate alternative management options for achieving sustainable management of existing water resources. The key objectives of this project are to determine the seepage rate through some canal reaches in the TV, evaluate the integration of the gain and loss method, remote sensing, GIS, hydrogeophysical simulation, and direct current (DC) resistivity geophysical methods for water resource management. We hypothesize that the underlying lithology and size of canals affect the magnitude of the seepage rate. Flow measurements were collected weekly between July and August 2020 in canal reaches representing different sizes and lithological units to determine the seepage rate using the reach gain/loss method. Canal variability and measurement uncertainty were included in seepage estimation for the entire TV using 3 alternative scaling approaches. DC resistivity was used as a complementary method to monitor the seepage effect on the shallow GW aquifer over 2 months. This research evaluates to what extent canal size and its underlying lithology affects the seepage rate, and how the integration of methods may provide additional insight into groundwater exchange-surface water.


2019 ◽  
Vol 14 (No. 4) ◽  
pp. 221-228
Author(s):  
Kidia K. Gelaye ◽  
Franz Zehetner ◽  
Willibald Loiskandl ◽  
Andreas Klik

In Ethiopia, soil salinity has become a challenge for agricultural production in irrigated arid and semi-arid areas. This research investigates the effectiveness of leaching salt remediation under different soil textures and groundwater tables. Leaching was conducted in the bare parts of three abandoned saline fields. Soil texture of Field 1 (F1) is sandy loam while Field 2 (F2) and Field 3 (F3) are clay loam. The F1, F2, and F3 groundwater was located at 1.8, 1.5 and > 3 m, respectively. The leaching requirement water levels were 15, 20, 25, and 30% higher than the evaporation of the bare field needed for four consecutive weeks, respectively. The results of this study show that, after four days of leaching, the salinity of F1 with sandy loam texture was significantly (P < 0.05) and more strongly reduced than for the other fields exhibiting clay loam texture. For F1, salinity was reduced from 16.3 to 6.2 dS/m and from 12.4 to 5.5 dS/m at depths of 0–30 and 30–60 cm, respectively. In head parts of F1 and F3, the salinity level was reduced to 2.0 dS/m. However, in F2 with shallow groundwater and clay loam texture, the salinity levels were slightly higher after leaching, i.e. from 11.2 to 12.0 dS/m and from 8.1 to 11.6 dS/m at 0–30 and 30–60 cm depths, respectively. In our experiment, effective leaching was achieved only in the field with sandy soil and deeper groundwater table. We saw that the application of leaching with surface drainage at shallow groundwater levels may further exacerbate salinity problems. For such situations, the use of subsurface drainage could sustain the groundwater depth and prevent additional salinization. On clay-textured fields with shallow groundwater table, a prolonged leaching application is necessary to reduce the salt contents.  


2012 ◽  
Vol 9 (4) ◽  
pp. 4235-4262 ◽  
Author(s):  
S. Han ◽  
D. Xu ◽  
S. Wang

Abstract. Runoff formation processes at the experimental plot (1600 m2), the field (0.06 km2), and the small catchment (1.36 km2) with shallow groundwater table and dense drainage system in North Huaihe River Plain (the northern part of the Huaihe River Basin, China) were analyzed based on observed rainfall, runoff and groundwater table depth data of 30 storm events during the flood seasons from 1997 to 2008. At the outlet of the furrow of the experimental plot, only the surface runoff was collected and measured, whereas both the surface and subsurface runoffs were collected at the drainage ditches outlets of the field and the small catchment. The present study showed that the relatively narrow range of rainfall amounts resulted in significantly different runoff amounts at all the three scales. When the ground water is close to surface, the runoff amount is a great percentage of rainfall amount. Significant linear relationships between the difference of rainfall and runoff amounts and the changes in water table or the initial water table depth were found. When the 30 events were divided into three groups with initial water table (as a parameter indicating the antecedent moisture condition) shallower than 0.5 m, deeper than 2.3 m or between 0.5 m and 2.3 m, significant rainfall-runoff relationships existed for each group. These imply that saturation-excess surface flow dominated the runoff response, especially when water table is shallow. For almost all the events, the water table rose above the bottom of drainage ditch during the event, and the total runoff amounts were larger at the field and the catchment than that at the plot with only surface flow measured, showing a great contribution of subsurface flow. Groundwater table depth, not only reflecting the antecedent moisture conditions, but also influencing the lateral sub-surface flow to the drainage ditches, would be an important parameter dominating runoff formation process in catchment like the study area with shallow water table and dense drainage system.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1047
Author(s):  
Kamilla Modrovits ◽  
András Csepregi ◽  
Ilona Kovácsné Székely ◽  
István Gábor Hatvani ◽  
József Kovács

The modeling of karst water level fluctuations is a crucial task in the water resource management of vulnerable karstic areas. In the Transdanubian Range (East Central Europe, Hungary), from 1950 to 1990, coal and bauxite mining were carried out, with large amounts of karst water being extracted, thus lowering the water table by amounts ranging between 10 and 100 m. Since the cessation of mining activities in the early 1990s, the volume of natural recharge has exceeded the amount of dewatering, and the system has begun to return to its original undisturbed state. This apparently welcome development does, however, bring economic and technical engineering problems. The estimation and prediction of such water level changes is often tackled via the use of deterministic approaches, however, in the present case, it is also addressed with an alternative approach using trend estimation to monthly water level data from 107 karst water wells over the period 1990–2017. To approximate the change in karst water levels, (i) growth curve models were fitted to the monthly data, allowing the estimation of karst water levels, at least as far as 2030. Similarly, this was also done with (ii) deterministic modelling in order to describe the recovery process up to 2030. Specifically, measured and predicted values for karst water level were used to derive interpolated (kriged) maps to compare the forecasting power of the two approaches. Comparing the results of the trend analysis with those of the traditional deterministic modelling results, it is apparent that the two approaches predict similar spatial distribution of water levels, but slightly different future water level values.


2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


Sign in / Sign up

Export Citation Format

Share Document