scholarly journals Predicting Cyanobacterial Harmful Algal Blooms (CyanoHABs) in a Regulated River Using a Revised EFDC Model

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 439
Author(s):  
Jung Min Ahn ◽  
Jungwook Kim ◽  
Lan Joo Park ◽  
Jihye Jeon ◽  
Jaehun Jong ◽  
...  

Cyanobacterial Harmful Algal Blooms (CyanoHABs) produce toxins and odors in public water bodies and drinking water. Current process-based models predict algal blooms by modeling chlorophyll-a concentrations. However, chlorophyll-a concentrations represent all algae and hence, a method for predicting the proportion of harmful cyanobacteria is required. We proposed a technique to predict harmful cyanobacteria concentrations based on the source codes of the Environmental Fluid Dynamics Code from the National Institute of Environmental Research. A graphical user interface was developed to generate information about general water quality and algae which was subsequently used in the model to predict harmful cyanobacteria concentrations. Predictive modeling was performed for the Hapcheon-Changnyeong Weir–Changnyeong-Haman Weir section of the Nakdong River, South Korea, from May to October 2019, the season in which CyanoHABs predominantly occur. To evaluate the success rate of the proposed model, a detailed five-step classification of harmful cyanobacteria levels was proposed. The modeling results demonstrated high prediction accuracy (62%) for harmful cyanobacteria. For the management of CyanoHABs, rather than chlorophyll-a, harmful cyanobacteria should be used as the index, to allow for a direct inference of their cell densities (cells/mL). The proposed method may help improve the existing Harmful Algae Alert System in South Korea.

2020 ◽  
Vol 12 (15) ◽  
pp. 6224
Author(s):  
Jisoo Choi ◽  
Jun Oh Min ◽  
Bohyung Choi ◽  
Dokyun Kim ◽  
Jae Joong Kang ◽  
...  

To identify key factors that control primary production (P.P.) and trigger cyanobacterial harmful algal blooms (cHABs), we investigated spatio-temporal variations in P.P. in a continuous weir system in the Nakdong River once or twice a month from April to October 2018. P.P. was measured through an in-situ incubation experiment using a 13C tracer. Relative proportion of pigment-based phytoplankton composition was calculated by the CHEMTAX program based on pigment analysis using a high-performance liquid chromatography (HPLC). P.P. was higher in spring (1130 ± 1140 mg C m−2 d−1) and summer (1060 ± 814 mg C m−2 d−1) than autumn (180 ± 220 mg C m−2 d−1), and tended to increase downstream. P.P. was negatively related to PO43− (r = −0.41, p < 0.01) due to utilization by phytoplankton during the spring and summer when it was high. The relative proportion of pigment-based cyanobacteria (mainly Microcystis sp.) was positively correlated with water temperature (r = 0.79, p < 0.01) and hydraulic retention time (HRT, r = 0.67, p < 0.01), suggesting that these two factors should affect cHABs in summer. Therefore, to control HRT could be one of the solutions for reducing cHABs in a continuous weir system.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1409
Author(s):  
Hamdhani Hamdhani ◽  
Drew E. Eppehimer ◽  
David Walker ◽  
Michael T. Bogan

Chlorophyll-a measurements are an important factor in the water quality monitoring of surface waters, especially for determining the trophic status and ecosystem management. However, a collection of field samples for extractive analysis in a laboratory may not fully represent the field conditions. Handheld fluorometers that can measure chlorophyll-a in situ are available, but their performance in waters with a variety of potential light-interfering substances has not yet been tested. We tested a handheld fluorometer for sensitivity to ambient light and turbidity and compared these findings with EPA Method 445.0 using water samples obtained from two urban lakes in Tucson, Arizona, USA. Our results suggested that the probe was not sensitive to ambient light and performed well at low chlorophyll-a concentrations (<25 µg/L) across a range of turbidity levels (50–70 NTU). However, the performance was lower when the chlorophyll-a concentrations were >25 µg/L and turbidity levels were <50 NTU. To account for this discrepancy, we developed a calibration equation to use for this handheld fluorometer when field monitoring for potential harmful algal blooms in water bodies.


Harmful Algae ◽  
2017 ◽  
Vol 68 ◽  
pp. 168-177 ◽  
Author(s):  
Xiaomei Su ◽  
Alan D. Steinman ◽  
Xiangming Tang ◽  
Qingju Xue ◽  
Yanyan Zhao ◽  
...  

Harmful Algae ◽  
2020 ◽  
Vol 96 ◽  
pp. 101828 ◽  
Author(s):  
Deepak R. Mishra ◽  
Abhishek Kumar ◽  
Lakshmish Ramaswamy ◽  
Vinay K. Boddula ◽  
Moumita C. Das ◽  
...  

2019 ◽  
Vol 37 (4) ◽  
pp. 356-370 ◽  
Author(s):  
Seungjun Lee ◽  
Jinnam Kim ◽  
Boseung Choi ◽  
Gijung Kim ◽  
Jiyoung Lee

Harmful Algae ◽  
2019 ◽  
Vol 81 ◽  
pp. 59-64 ◽  
Author(s):  
Timothy W. Davis ◽  
Richard Stumpf ◽  
George S. Bullerjahn ◽  
Robert Michael L. McKay ◽  
Justin D. Chaffin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document