scholarly journals Photogrammetry for Free Surface Flow Velocity Measurement: From Laboratory to Field Measurements

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1675
Author(s):  
Hang Trieu ◽  
Per Bergström ◽  
Mikael Sjödahl ◽  
J. Gunnar I. Hellström ◽  
Patrik Andreasson ◽  
...  

This study describes a multi-camera photogrammetric approach to measure the 3D velocity of free surface flow. The properties of the camera system and particle tracking velocimetry (PTV) algorithm were first investigated in a measurement of a laboratory open channel flow to prepare for field measurements. The in situ camera calibration methods corresponding to the two measurement situations were applied to mitigate the instability of the camera mechanism and camera geometry. There are two photogrammetry-based PTV algorithms presented in this study regarding different types of surface particles employed on the water flow. While the first algorithm uses the particle tracking method applied for individual particles, the second algorithm is based on correlation-based particle clustering tracking applied for clusters of small size particles. In the laboratory, reference data are provided by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The differences in velocities measured by photogrammetry and PIV, photogrammetry and LDV are 0.1% and 3.6%, respectively. At a natural river, the change of discharges between two measurement times is found to be 15%, and the corresponding value reported regarding mass flow through a nearby hydropower plant is 20%. The outcomes reveal that the method can provide a reliable estimation of 3D surface velocity with sufficient accuracy.

1992 ◽  
Vol 114 (1) ◽  
pp. 79-84 ◽  
Author(s):  
J. Stevens ◽  
B. W. Webb

The objective of this research was to characterize the flow structure under an impinging liquid jet striking a flat, normally oriented surface. The approach was the measurement of the free surface velocities of the jet prior to impingement and the surface velocities of the radially spreading liquid layer. A novel laser-Doppler velocimetry technique was used. The LDV system was configured such that the measurement volume would span the time-dependent fluctuations of the free surface, with the surface velocity being measured. The mean and fluctuating components of a single direction of the velocity vector were measured. It was found that the radial liquid layer data collapsed well over the range of jet Reynolds numbers 16,000 < Re < 47,000 if plotted in dimensionless coordinates, where the measured velocity was normalized by the average jet exit velocity and the radial coordinate was normalized by the nozzle diameter. Mean liquid layer depths were inferred from the velocity measurements by assuming a velocity profile across the layer, and were reported. Pre-impingement jet measurements suggest that the flow development is nearly complete two diameters from the nozzle exit.


1994 ◽  
Vol 272 ◽  
pp. 91-108 ◽  
Author(s):  
Erik B. Hansen ◽  
Mark A. Kelmanson

The commonly observed phenomenon of steady, viscous, free-surface flow on the outer surface of a rotating cylinder is investigated by means of an iterative, integral-equation formulation applied to the Stokes approximation of the Navier-Stokes equations. The method of solution places no restriction on the thickness of the fluid layer residing on the cylinder surface; indeed, results are presented for cases where the layer thickness is of the same order of magnitude as the cylinder radius.Free-surface profiles and free-surface velocity distributions are presented for a range of flow parameters. Where appropriate, comparisons are made with the results of thinfilm theory; excellent agreement is observed.For all film thicknesses and surface tensions, results show a high degree of symmetry about a horizontal axis even though the gravity field is vertical. A proof is presented that, for vanishing surface tension, this is a consequence of the Stokes approximation.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


2005 ◽  
Vol 63 (5-7) ◽  
pp. e1897-e1908 ◽  
Author(s):  
E. Miglio ◽  
S. Perotto ◽  
F. Saleri

Sign in / Sign up

Export Citation Format

Share Document