scholarly journals Non-Linear Visualization and Importance Ratio Analysis of Multivariate Polynomial Regression Ecological Models Based on River Hydromorphology and Water Quality

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2708
Author(s):  
Vishwa Shah ◽  
Sarath Chandra K. Jagupilla ◽  
David A. Vaccari ◽  
Daniel Gebler

Multivariate polynomial regression (MPR) models were developed for five macrophyte indices. MPR models are able to capture complex interactions in the data while being tractable and transparent for further analysis. The performance of the MPR modeling approach was compared to previous work using artificial neural networks. The data were obtained from hydromorphologically modified Polish rivers with a widely varying water quality. The modeled indices were the Macrophyte Index for Rivers (MIR), the Macrophyte Biological Index for Rivers (IBMR), and the River Macrophyte Nutrient Index (RMNI). These indices measure the trophic and ecological status of the rivers. Additionally, two biological diversity indices, species richness (N) and the Simpson index (D), were modeled. The explanatory variables were physico-chemical properties depicting water quality and river hydromorphological status indices. In comparison to artificial neural networks, the MPR models performed similarly in terms of goodness of fit. However, the MPR models had advantages such as model simplicity and ability to be subject to effective visualization of complex nonlinear input–output relationships, as well as facilitating sensitivity analysis using importance ratios to identify effects of individual input variables.

2019 ◽  
Author(s):  
Chem Int

Recently, process control in wastewater treatment plants (WWTPs) is, mostly accomplished through examining the quality of the water effluent and adjusting the processes through the operator’s experience. This practice is inefficient, costly and slow in control response. A better control of WTPs can be achieved by developing a robust mathematical tool for performance prediction. Due to their high accuracy and quite promising application in the field of engineering, Artificial Neural Networks (ANNs) are attracting attention in the domain of WWTP predictive performance modeling. This work focuses on applying ANN with a feed-forward, back propagation learning paradigm to predict the effluent water quality of the Habesha brewery WTP. Data of influent and effluent water quality covering approximately an 11-month period (May 2016 to March 2017) were used to develop, calibrate and validate the models. The study proves that ANN can predict the effluent water quality parameters with a correlation coefficient (R) between the observed and predicted output values reaching up to 0.969. Model architecture of 3-21-3 for pH and TN, and 1-76-1 for COD were selected as optimum topologies for predicting the Habesha Brewery WTP performance. The linear correlation between predicted and target outputs for the optimal model architectures described above were 0.9201 and 0.9692, respectively.


Author(s):  
A Fernandes ◽  
H Chaves ◽  
R Lima ◽  
J Neves ◽  
H Vicente

2021 ◽  
Author(s):  
Juan F. Farfán-Durán ◽  
Luis Cea

<p>In recent years, the application of model ensembles has received increasing attention in the hydrological modelling community due to the interesting results reported in several studies carried out in different parts of the world. The main idea of these approaches is to combine the results of the same hydrological model or a number of different hydrological models in order to obtain more robust, better-fitting models, reducing at the same time the uncertainty in the predictions. The techniques for combining models range from simple approaches such as averaging different simulations, to more complex techniques such as least squares, genetic algorithms and more recently artificial intelligence techniques such as Artificial Neural Networks (ANN).</p><p>Despite the good results that model ensembles are able to provide, the models selected to build the ensemble have a direct influence on the results. Contrary to intuition, it has been reported that the best fitting single models do not necessarily produce the best ensemble. Instead, better results can be obtained with ensembles that incorporate models with moderate goodness of fit. This implies that the selection of the single models might have a random component in order to maximize the results that ensemble approaches can provide.</p><p>The present study is carried out using hydrological data on an hourly scale between 2008 and 2015 corresponding to the Mandeo basin, located in the Northwest of Spain. In order to obtain 1000 single models, a hydrological model was run using 1000 sets of parameters sampled randomly in their feasible space. Then, we have classified the models in 3 groups with the following characteristics: 1) The 25 single models with highest Nash-Sutcliffe coefficient, 2) The 25 single models with the highest Pearson coefficient, and 3) The complete group of 1000 single models.</p><p>The ensemble models are built with 5 models as the input of an ANN and the observed series as the output. Then, we applied the Random-Restart Hill-Climbing (RRHC) algorithm choosing 5 random models in each iteration to re-train the ANN in order to identify a better ensemble. The algorithm is applied to build 50 ensembles in each group of models. Finally, the results are compared to those obtained by optimizing the model using a gradient-based method by means of the following goodness-of-fit measures: Nash-Sutcliffe (NSE) coefficient, adapted for high flows Nash-Sutcliffe (HF−NSE), adapted for low flows Nash-Sutcliffe (LF−W NSE) and coefficient of determination (R2).</p><p>The results show that the RRHC algorithm can identify adequate ensembles. The ensembles built using the group of models selected based on the NSE outperformed the model optimized by the gradient method in 64 % of the cases in at least 3 of 4 coefficients, both in the calibration and validation stages. Followed by the ensembles built with the group of models selected based on the Pearson coefficient with 56 %. In the case of the third group, no ensembles were identified that outperformed the gradient-based method. However, the most part of the ensembles outperformed the 1000 individual models.</p><p><strong>Keywords: Multi-model ensemble; Single-model ensemble; Artificial Neural Networks; Hydrological Model; Random-restart Hill-climbing</strong></p><p> </p>


2018 ◽  
Vol 17 (1) ◽  
pp. 137-148
Author(s):  
Abdiel E. Laureano-Rosario ◽  
Andrew P. Duncan ◽  
Erin M. Symonds ◽  
Dragan A. Savic ◽  
Frank E. Muller-Karger

Abstract Predicting recreational water quality is key to protecting public health from exposure to wastewater-associated pathogens. It is not feasible to monitor recreational waters for all pathogens; therefore, monitoring programs use fecal indicator bacteria (FIB), such as enterococci, to identify wastewater pollution. Artificial neural networks (ANNs) were used to predict when culturable enterococci concentrations exceeded the U.S. Environmental Protection Agency (U.S. EPA) Recreational Water Quality Criteria (RWQC) at Escambron Beach, San Juan, Puerto Rico. Ten years of culturable enterococci data were analyzed together with satellite-derived sea surface temperature (SST), direct normal irradiance (DNI), turbidity, and dew point, along with local observations of precipitation and mean sea level (MSL). The factors identified as the most relevant for enterococci exceedance predictions based on the U.S. EPA RWQC were DNI, turbidity, cumulative 48 h precipitation, MSL, and SST; they predicted culturable enterococci exceedances with an accuracy of 75% and power greater than 60% based on the Receiving Operating Characteristic curve and F-Measure metrics. Results show the applicability of satellite-derived data and ANNs to predict recreational water quality at Escambron Beach. Future work should incorporate local sanitary survey data to predict risky recreational water conditions and protect human health.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 749 ◽  
Author(s):  
Jorge E. Jiménez-Hornero ◽  
Inés María Santos-Dueñas ◽  
Isidoro García-García

Modelling techniques allow certain processes to be characterized and optimized without the need for experimentation. One of the crucial steps in vinegar production is the biotransformation of ethanol into acetic acid by acetic bacteria. This step has been extensively studied by using two predictive models: first-principles models and black-box models. The fact that first-principles models are less accurate than black-box models under extreme bacterial growth conditions suggests that the kinetic equations used by the former, and hence their goodness of fit, can be further improved. By contrast, black-box models predict acetic acid production accurately enough under virtually any operating conditions. In this work, we trained black-box models based on Artificial Neural Networks (ANNs) of the multilayer perceptron (MLP) type and containing a single hidden layer to model acetification. The small number of data typically available for a bioprocess makes it rather difficult to identify the most suitable type of ANN architecture in terms of indices such as the mean square error (MSE). This places ANN methodology at a disadvantage against alternative techniques and, especially, polynomial modelling.


Sign in / Sign up

Export Citation Format

Share Document