scholarly journals Modelling Acetification with Artificial Neural Networks and Comparison with Alternative Procedures

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 749 ◽  
Author(s):  
Jorge E. Jiménez-Hornero ◽  
Inés María Santos-Dueñas ◽  
Isidoro García-García

Modelling techniques allow certain processes to be characterized and optimized without the need for experimentation. One of the crucial steps in vinegar production is the biotransformation of ethanol into acetic acid by acetic bacteria. This step has been extensively studied by using two predictive models: first-principles models and black-box models. The fact that first-principles models are less accurate than black-box models under extreme bacterial growth conditions suggests that the kinetic equations used by the former, and hence their goodness of fit, can be further improved. By contrast, black-box models predict acetic acid production accurately enough under virtually any operating conditions. In this work, we trained black-box models based on Artificial Neural Networks (ANNs) of the multilayer perceptron (MLP) type and containing a single hidden layer to model acetification. The small number of data typically available for a bioprocess makes it rather difficult to identify the most suitable type of ANN architecture in terms of indices such as the mean square error (MSE). This places ANN methodology at a disadvantage against alternative techniques and, especially, polynomial modelling.

Author(s):  
M. A. Rafe Biswas ◽  
Melvin D. Robinson

A direct methanol fuel cell can convert chemical energy in the form of a liquid fuel into electrical energy to power devices, while simultaneously operating at low temperatures and producing virtually no greenhouse gases. Since the direct methanol fuel cell performance characteristics are inherently nonlinear and complex, it can be postulated that artificial neural networks represent a marked improvement in performance prediction capabilities. Artificial neural networks have long been used as a tool in predictive modeling. In this work, an artificial neural network is employed to predict the performance of a direct methanol fuel cell under various operating conditions. This work on the experimental analysis of a uniquely designed fuel cell and the computational modeling of a unique algorithm has not been found in prior literature outside of the authors and their affiliations. The fuel cell input variables for the performance analysis consist not only of the methanol concentration, fuel cell temperature, and current density, but also the number of cells and anode flow rate. The addition of the two typically unconventional variables allows for a more distinctive model when compared to prior neural network models. The key performance indicator of our neural network model is the cell voltage, which is an average voltage across the stack and ranges from 0 to 0:8V. Experimental studies were carried out using DMFC stacks custom-fabricated, with a membrane electrode assembly consisting of an additional unique liquid barrier layer to minimize water loss through the cathode side to the atmosphere. To determine the best fit of the model to the experimental cell voltage data, the model is trained using two different second order training algorithms: OWO-Newton and Levenberg-Marquardt (LM). The OWO-Newton algorithm has a topology that is slightly different from the topology of the LM algorithm by the employment of bypass weights. It can be concluded that the application of artificial neural networks can rapidly construct a predictive model of the cell voltage for a wide range of operating conditions with an accuracy of 10−3 to 10−4. The results were comparable with existing literature. The added dimensionality of the number of cells provided insight into scalability where the coefficient of the determination of the results for the two multi-cell stacks using LM algorithm were up to 0:9998. The model was also evaluated with empirical data of a single-cell stack.


2021 ◽  
Author(s):  
Juan F. Farfán-Durán ◽  
Luis Cea

<p>In recent years, the application of model ensembles has received increasing attention in the hydrological modelling community due to the interesting results reported in several studies carried out in different parts of the world. The main idea of these approaches is to combine the results of the same hydrological model or a number of different hydrological models in order to obtain more robust, better-fitting models, reducing at the same time the uncertainty in the predictions. The techniques for combining models range from simple approaches such as averaging different simulations, to more complex techniques such as least squares, genetic algorithms and more recently artificial intelligence techniques such as Artificial Neural Networks (ANN).</p><p>Despite the good results that model ensembles are able to provide, the models selected to build the ensemble have a direct influence on the results. Contrary to intuition, it has been reported that the best fitting single models do not necessarily produce the best ensemble. Instead, better results can be obtained with ensembles that incorporate models with moderate goodness of fit. This implies that the selection of the single models might have a random component in order to maximize the results that ensemble approaches can provide.</p><p>The present study is carried out using hydrological data on an hourly scale between 2008 and 2015 corresponding to the Mandeo basin, located in the Northwest of Spain. In order to obtain 1000 single models, a hydrological model was run using 1000 sets of parameters sampled randomly in their feasible space. Then, we have classified the models in 3 groups with the following characteristics: 1) The 25 single models with highest Nash-Sutcliffe coefficient, 2) The 25 single models with the highest Pearson coefficient, and 3) The complete group of 1000 single models.</p><p>The ensemble models are built with 5 models as the input of an ANN and the observed series as the output. Then, we applied the Random-Restart Hill-Climbing (RRHC) algorithm choosing 5 random models in each iteration to re-train the ANN in order to identify a better ensemble. The algorithm is applied to build 50 ensembles in each group of models. Finally, the results are compared to those obtained by optimizing the model using a gradient-based method by means of the following goodness-of-fit measures: Nash-Sutcliffe (NSE) coefficient, adapted for high flows Nash-Sutcliffe (HF−NSE), adapted for low flows Nash-Sutcliffe (LF−W NSE) and coefficient of determination (R2).</p><p>The results show that the RRHC algorithm can identify adequate ensembles. The ensembles built using the group of models selected based on the NSE outperformed the model optimized by the gradient method in 64 % of the cases in at least 3 of 4 coefficients, both in the calibration and validation stages. Followed by the ensembles built with the group of models selected based on the Pearson coefficient with 56 %. In the case of the third group, no ensembles were identified that outperformed the gradient-based method. However, the most part of the ensembles outperformed the 1000 individual models.</p><p><strong>Keywords: Multi-model ensemble; Single-model ensemble; Artificial Neural Networks; Hydrological Model; Random-restart Hill-climbing</strong></p><p> </p>


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1923
Author(s):  
Eduardo G. Pardo ◽  
Jaime Blanco-Linares ◽  
David Velázquez ◽  
Francisco Serradilla

The objective of this research is to improve the hydrogen production and total profit of a real Steam Reforming plant. Given the impossibility of tuning the real factory to optimize its operation, we propose modelling the plant using Artificial Neural Networks (ANNs). Particularly, we combine a set of independent ANNs into a single model. Each ANN uses different sets of inputs depending on the physical processes simulated. The model is then optimized as a black-box system using metaheuristics (Genetic and Memetic Algorithms). We demonstrate that the proposed ANN model presents a high correlation between the real output and the predicted one. Additionally, the performance of the proposed optimization techniques has been validated by the engineers of the plant, who reported a significant increase in the benefit that was obtained after optimization. Furthermore, this approach has been favorably compared with the results that were provided by a general black-box solver. All methods were tested over real data that were provided by the factory.


Author(s):  
P. N. Botsaris ◽  
D. Bechrakis ◽  
P. D. Sparis

The intelligent control as fuzzy or artificial is based on either expert knowledge or experimental data and therefore it possesses intrinsic qualities like robustness and ease implementation. Lately, many researchers present studies aim to show that this kind of control can be used in practical applications such as the idle speed control problem in automotive industry. In this study, an estimation of an automobile three-way catalyst performance with artificial neural networks is presented. It may be an alternative approach for an on board diagnostic system (OBD) to predict the catalyst performance. This method was tested using data sets from two kind of catalysts, a brand new and an old one on a laboratory bench at idle speed. The catalyst operation during the “steady state” phase (the phase that the catalyst has reached its operating conditions and works normally) is examined. Further experiments are needed for different catalyst typed before the methods is proposed generally. It consists of 855 elements of catalyst inlet-outlet temperature difference (DT), hydrocarbons (HC), and carbon monoxide (CO) and carbon dioxide (CO2) emissions. The simulation: detects the values of HC, CO, CO2 using the DT as an input to our network forms a neural network. Results showed serious indications that artificial neural networks (or fuzzy logic control laws) could estimate the catalyst performance adequately depending their training process, if certain information about the catalyst system and the inputs and output of such system are known. In this study the “steady state” period experimental results are presented. In this paper the “steady state” period experimental results are presented.


2013 ◽  
Vol 6 (3) ◽  
pp. 205-211

In hydrology, as in a number of diverse fields, there has been an increasing use of Artificial Neural Networks (ANN) as black-box simplified models. This is mainly justified by their ability to model complex non-linear patterns; in addition they can self-adjust and produce a consistent response when ‘trained’ using observed outputs. This paper utilises various types of ANNs in an attempt to assess the relative performance of existing models. Ali Efenti, a subcatchment of the river Pinios (Greece), is examined and the results support the hypothesis that ANNs can produce qualitative forecasts. A 7-hour ahead forecast in particular proves to be of fairly high precision, especially when an error prediction technique is introduced to the ANN models.


Author(s):  
Evren Dağlarli

The explainable artificial intelligence (xAI) is one of the interesting issues that has emerged recently. Many researchers are trying to deal with the subject with different dimensions and interesting results that have come out. However, we are still at the beginning of the way to understand these types of models. The forthcoming years are expected to be years in which the openness of deep learning models is discussed. In classical artificial intelligence approaches, we frequently encounter deep learning methods available today. These deep learning methods can yield highly effective results according to the data set size, data set quality, the methods used in feature extraction, the hyper parameter set used in deep learning models, the activation functions, and the optimization algorithms. However, there are important shortcomings that current deep learning models are currently inadequate. These artificial neural network-based models are black box models that generalize the data transmitted to it and learn from the data. Therefore, the relational link between input and output is not observable. This is an important open point in artificial neural networks and deep learning models. For these reasons, it is necessary to make serious efforts on the explainability and interpretability of black box models.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6608
Author(s):  
Prapatsorn Borisut ◽  
Aroonsri Nuchitprasittichai

Methanol production via carbon dioxide (CO2) hydrogenation is a green chemical process, which can reduce CO2 emission. The operating conditions for minimum methanol production cost of three configurations were investigated in this work. An artificial neural network with Latin hypercube sampling technique was applied to construct model-represented methanol production. Price sensitivity was performed to study the impacts of the raw materials price on methanol production cost. Price sensitivity results showed that the hydrogen price has a large impact on the methanol production cost. In mathematical modeling using feedforward artificial neural networks, four different numbers of nodes were used to train artificial neural networks. The artificial neural network with eight numbers of nodes showed the most suitable configuration, which yielded the lowest percent error between the actual and predicted methanol production cost. The optimization results showed that the recommended process design among the three studied configurations was the process of methanol production with two reactors in series. The minimum methanol production cost obtained from this configuration was $888.85 per ton produced methanol, which was the lowest methanol production cost among all configurations.


2020 ◽  
Vol 68 (2) ◽  
pp. 157-167
Author(s):  
Gino Iannace ◽  
Amelia Trematerra ◽  
Giuseppe Ciaburro

Wind energy has been one of the most widely used forms of energy since ancient times, with it being a widespread type of clean energy, which is available in mechanical form and can be efficiently transformed into electricity. However, wind turbines can be associated with concerns around noise pollution and visual impact. Modern turbines can generate more electrical power than older turbines even if they produce a comparable sound power level. Despite this, protests from citizens living in the vicinity of wind farms continue to be a problem for those institutions which issue permits. In this article, acoustic measurements carried out inside a house were used to create a model based on artificial neural networks for the automatic recognition of the noise emitted by the operating conditions of a wind farm. The high accuracy of the models obtained suggests the adoption of this tool for several applications. Some critical issues identified in a measurement session suggest the use of additional acoustic descriptors as well as specific control conditions.


Author(s):  
Hassan Hashemipour ◽  
Saeid Baroutian ◽  
Esmail Jamshidi ◽  
Alireza Abazari

In this work, thermal activation of pistachio shell was studied in a fluidized bed reactor. The effects of operating conditions on the pore development within the char particles were studied experimentally. The results showed that activation temperature, residence time, oxidizing gas type and concentration have main effects on the Iodine adsorption capacity of the product. The highest surface area was obtained using steam activation at temperature 850°C for 45 min. The synthesis process was also simulated using artificial neural networks (ANNs) to estimate the Iodine number of the product. The present work applied a Tan-sigmoid transfer function in three layers in the feed forward neural network with back propagation algorithm. The results of the network are in good agreement with the experimental data with a maximum relative deviation of 0.015%.


Sign in / Sign up

Export Citation Format

Share Document