scholarly journals Spatial Delimitation of Small Headwater Catchments and Their Classification in Terms of Runoff Risks

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3458
Author(s):  
Petr Kavka

The hydrological similarity of catchments forms a basis for generalizing their hydrological response. This similarity of the hydrological response enables catchments to be classified from numerous perspectives, e.g., hydrological extremes or ecological aspects of catchments. A specific group is formed by so-called “first-order catchments”. This article describes the derivation process of small headwater catchments up to 5 km2 in size on the territory of the Czech Republic. The delimitation is based on the digital terrain model, the stream network, and the water reservoirs. The catchments derived in this way cover 80% of the country. Five mutually independent and sufficiently representative parameters were selected with Principal Components Analysis (PCA), and were used for the cluster analysis performed on two to eight clusters. Clustering Validity Indices (CVI) was used to determine the optimal number of clusters. Subsequently, each generated cluster was assessed for the potential risk of the occurrence of direct runoff, in five classes, on a scale from a moderate degree of risk to a high degree of risk. Six clusters were generated, which is the optimal number in terms of the CVI and their hydrological properties. In this case, 17% of the Czech Republic territory is assessed as lying within a high-risk area, 39% as lying within a medium-risk area, and 24% as lying within a below-average risk area in terms of the occurrence of direct runoff.

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1964 ◽  
Author(s):  
Martin Caletka ◽  
Monika Šulc Michalková ◽  
Petr Karásek ◽  
Petr Fučík

The SCS-CN method is a globally known procedure used primarily for direct-runoff estimates. It also is integrated in many modelling applications. However, the method was developed in specific geographical conditions, often making its universal applicability problematic. This study aims to determine appropriate values of initial abstraction coefficients λ and curve numbers (CNs), based on measured data in five experimental catchments in the Czech Republic, well representing the physiographic conditions in Central Europe, to improve direct-runoff estimates. Captured rainfall-runoff events were split into calibration and validation datasets. The calibration dataset was analysed by applying three approaches: (1) Modifying λ, both discrete and interpolated, using the tabulated CN values; (2) event analysis based on accumulated rainfall depth at the moment runoff starts to form; and (3) model fitting, an iterative procedure, to search for a pair of λ, S (CN, respectively). To assess individual rainfall characteristics’ possible influence, a principal component analysis and cluster analysis were conducted. The results indicate that the CN method in its traditional arrangement is not very applicable in the five experimental catchments and demands corresponding modifications to determine λ and CN (or S, respectively). Both λ and CN should be viewed as flexible, catchment-dependent (regional) parameters, rather than fixed values. The acquired findings show the need for a systematic yet site-specific revision of the traditional CN method, which may help to improve the accuracy of CN-based rainfall-runoff modelling.


2020 ◽  
Author(s):  
Petr Kavka ◽  
Luděk Strouhal ◽  
Romana Kubínová ◽  
Marek Kaspar

<p>It this contribution partial results of the project, which is focused on hydrological modelling as a tool for designing small water management construction and soil conservation measure and in the landscape are presented. For the hydrological response, design rainfall and the initial condition, the current state of the river basin as well as the characteristics of the area under consideration are important. For the hydrological response, design rainfall, the current conditions of the catchment area as well as the characteristics of the solved area are important. </p><p>Design precipitation in relation to initial conditions (soil moisture and surface condition) is one of the project goals. This data are important for hydrological modelling that is a tool for designing water management measures on small watercourses and in river basin areas is relevant for catchment size where long-term measurements and possible analogy cannot be used. The design of small hydrotechnical buildings based on hydrological modelling is used for catchments up to the area of ​​5 km2.</p><p>Basic categorization of small catchments in the Czech Republic is presented. At present, the Czech catchments are categorized into four levels. From the main river catchment to the catchment of the category IV. order (small catchments). There are considerable differences in size in the fourth category. From catchment areas of over 20 km2 to supplementary catchment areas of less than 1 km2. The categorization of these catchments in terms of their potential hydrological response is described in the past. For the categorization of the territory of the Czech Republic at the level of small catchment areas in terms of hydrological response, the different size of the area is one of the hardly definable parameters.</p><p>For these reasons, the project addresses also the delimitation of small catchments in the Czech Republic, which fall into the category of areas up to 5 km2 and significant areas outside the watercourse and their subsequent classification in terms of possible hydrological response. The activities were in this ongoing project focused on delimitation of these catchments and research of suitable data for their classification.</p><p>Detailed model of terrain in the resolution 5x5 m and watercourse layer were used as input data for delimitation of small catchments. ArcGIS tools and Python scripting language were used for processing. As it is a relatively large data set, the following analyses were gradually repeated for the catchment III. order with the extension of the boundary, so as to ensure possible discrepancies between the delimitation of the basin and the distribution boards defined on the basis of a detailed terrain model.</p><p>Nine categories were selected as significant areas ranging from contributing areas of 0,3 to 5,5 km2. In the category of the smallest catchments (categories from 0,3 to 0,7 km2) there are over 70 thousand areas defined in the Czech Republic. In the category from 4,5 to 5,5 km2 there are over 4 thousand catchments. A categorization both for individual classes and overall for the territory of the Czech Republic according to the largest contributing area is presented.</p>


1998 ◽  
Vol 12 (1) ◽  
pp. 7-24 ◽  
Author(s):  
Koupilova ◽  
Vagero ◽  
Leon ◽  
Pikhart ◽  
Prikazsky ◽  
...  

GeroPsych ◽  
2012 ◽  
Vol 25 (3) ◽  
pp. 161-166
Author(s):  
Hana Stepankova ◽  
Eva Jarolimova ◽  
Eva Dragomirecka ◽  
Irena Sobotkova ◽  
Lenka Sulova ◽  
...  

This work provides an overview of psychology of aging and old age in the Czech Republic. Historical roots as well as recent activities are listed including clinical practice, cognitive rehabilitation, research, and the teaching of geropsychology.


2000 ◽  
Vol 5 (1) ◽  
pp. 62-65 ◽  
Author(s):  
Jiří Hoskovec ◽  
Josef M. Brožek

1994 ◽  
Vol 105 (7-8) ◽  
pp. 481-497
Author(s):  
Z. Neuhäuslová ◽  
J. Kolbek

Sign in / Sign up

Export Citation Format

Share Document