scholarly journals Multivariate Dam-Site Flood Frequency Analysis of the Three Gorges Reservoir Considering Future Reservoir Regulation and Precipitation

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 138
Author(s):  
Lihua Xiong ◽  
Cong Jiang ◽  
Shenglian Guo ◽  
Shuai Li ◽  
Rongrong Li ◽  
...  

Under a changing environment, the current hydrological design values derived from historical flood data for the Three Gorges Reservoir (TGR) might be no longer applicable due to the newly-built reservoirs upstream from the TGR and the changes in climatic conditions. In this study, we perform a multivariate dam-site flood frequency analysis for the TGR considering future reservoir regulation and summer precipitation. The Xinanjiang model and Muskingum routing method are used to reconstruct the dam-site flood variables during the operation period of the TGR. Then the distributions of the dam-site flood peak and flood volumes with durations of 3, 7, 15, and 30 days are built by Pearson type III (PIII) distribution with time-varying parameters, which are expressed as functions of both reservoir index and summer precipitation anomaly (SPA). The multivariate joint distribution of the dam-site flood variables is constructed by a 5-D C-vine copula. Finally, by using the criteria of annual average reliability (AAR) associated with the exceedance probabilities of OR, AND and Kendall, we derive the multivariate dam-site design floods for the TGR from the predicted flood distributions during the future operation period of the reservoir. The results indicate that the mean values of all flood variables are positively linked to SPA and negatively linked to RI. In the future, the flood mean values are predicted to present a dramatic decrease due to the regulation of the reservoirs upstream from the TGR. As the result, the design dam-site floods in the future will be smaller than those derived from historical flood distributions. This finding indicates that the TGR would have smaller flood risk in the future.

2018 ◽  
Vol 40 ◽  
pp. 03019
Author(s):  
Dayu Wang ◽  
Chunhong Hu ◽  
Chunming Fang ◽  
Jianzhao Guan ◽  
Lei Zhang

In recent years, the sediment delivery ratio (SDR) of the Three Gorges reservoir (TGR) has noticeably decreased as a result of the increase in water levels at the dam site and the decrease in inflow of fine particles, thereby resulting in increased reservoir siltation. Therefore, it is vital to research the factors that influence the SDR of the TGR. Factors that could have impact on the SDR were studied using TGR monitoring data. The study indicated that the water level at the dam site and inflow and outflow rates could have contributed to the change in the SDR. A sensitivity analysis of the influencing factors was then carried out using a mathematical model to simulate numerous sediment movement scenarios in the TGR. By changing the input conditions of the model, sufficient results were obtained to enable a sensitivity analysis of each factor. The results showed the flood retention time (FRT)—the ratio of reservoir capacity to average outflow discharge—was the principal factor influencing the SDR. The other factors (inflow sediment concentration, inflow sediment coefficient, inflow sediment gradations, and the shape coefficient of the inflow flood shape coefficient), also had an influence on the SDR. However, under different levels of FRT, their degrees of influence on the SDR were not the same..


2008 ◽  
Vol 35 (10) ◽  
pp. 1177-1182 ◽  
Author(s):  
A. Melih Yanmaz ◽  
M. Engin Gunindi

There is a growing tendency to assess safety levels of existing dams and to design new dams using probabilistic approaches according to project characteristics and site-specific conditions. This study is a probabilistic assessment of the overtopping reliability of a dam, which will be designed for flood detention purpose, and will compute the benefits that can be gained as a result of the implementation of this dam. In a case study, a bivariate flood frequency analysis was carried out using a five-parameter bivariate gamma distribution. A family of joint return period curves relating the runoff peak discharges to the runoff volumes at the dam site was derived. A number of hydrographs were also obtained under a joint return period of 100 years to observe the variation of overtopping tendency. The maximum reservoir elevation and overtopping reliability were determined by performing a probabilistic reservoir routing based on Monte Carlo simulations.


Author(s):  
Nazanin Sadeghi Loyeh ◽  
Alireza Massah Bavani

Abstract The frequency analysis of the maximum instantaneous flood is mostly based on the stationary assumption. The purpose of the present study is to compare the results of maximum instantaneous flood analysis under stationary and non-stationary conditions in Ghareh Sou basin, and also answer the question as to whether there is a difference between estimating the return period of maximum instantaneous flood in stationary and non-stationary conditions. First, the values of the temperature, wind speed, and rainfall of the study area under the two scenarios of Representative Concentration Pathway (RCP) 2.6 and 8.5 of the Hadley Centre coupled Model, version3 (HadCM3) model were downscaled. In the following, the Variable Infiltration Capacity (VIC) model was utilized to generate daily runoff. For converting the daily discharge to the maximum instantaneous flood, four methods of Fuller, Sangal, Fill Steiner, and artificial neural network (ANN) were compared. Finally, the maximum instantaneous floods of the future period were introduced to the Non-stationary Extreme Value Analysis (NEVA) software. Based on the results obtained from the research, the lack of considering the non-stationary conditions in the flood frequency analysis can result in underestimating the maximum instantaneous flood, which can also provide more risks for the related hydraulic structures.


Sign in / Sign up

Export Citation Format

Share Document