scholarly journals Design and Implementation of Reduced Grid Impact Charging Station for Public Transportation Applications

2021 ◽  
Vol 12 (1) ◽  
pp. 28 ◽  
Author(s):  
Marco di Benedetto ◽  
Fernando Ortenzi ◽  
Alessandro Lidozzi ◽  
Luca Solero

This paper deals with the complete design procedure, implementation and control software realization for a multi-converter charging station with reduced grid impact due to local electromechanical energy storage. In particular, energy storage is accomplished by a dedicated flywheel designed and built for this purpose. The proposed charging station was designed for ultra-fast charging procedures presenting a strongly reduced impact on the electrical grid. Modes of operations are described with reference to pure electric buses in public transportation applications.

Automatika ◽  
2020 ◽  
Vol 61 (4) ◽  
pp. 614-625 ◽  
Author(s):  
P. Prem ◽  
P. Sivaraman ◽  
J. S. Sakthi Suriya Raj ◽  
M. Jagabar Sathik ◽  
Dhafer Almakhles

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 558 ◽  
Author(s):  
Yian Yan ◽  
Huang Wang ◽  
Jiuchun Jiang ◽  
Weige Zhang ◽  
Yan Bao ◽  
...  

With the pervasiveness of electric vehicles and an increased demand for fast charging, stationary high-power fast-charging is becoming more widespread, especially for the purpose of serving pure electric buses (PEBs) with large-capacity onboard batteries. This has resulted in a huge distribution capacity demand. However, the distribution capacity is limited, and in some urban areas the cost of expanding the electric network capacity is very high. In this paper, three battery energy storage system (BESS) integration methods—the AC bus, each charging pile, or DC bus—are considered for the suppression of the distribution capacity demand according to the proposed charging topologies of a PEB fast-charging station. On the basis of linear programming theory, an evaluation model was established that consider the influencing factors of the configuration: basic electricity fee, electricity cost, cost of the energy storage system, costs of transformer and converter equipment, and electric energy loss. Then, a case simulation is presented using realistic operation data, and an economic comparison of the three configurations is provided. An analysis of the impacts of each influence factor in the case study is discussed to verify the case results. The numerical results indicate that the appropriate BESS configuration can significantly reduce the distribution demand and stationary cost synchronously.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2348 ◽  
Author(s):  
Fernando Ortenzi ◽  
Manlio Pasquali ◽  
Pier Paolo Prosini ◽  
Alessandro Lidozzi ◽  
Marco Di Benedetto

The last few decades have seen a significant increase in the number of electric vehicles (EVs) for private and public transportation around the world. This has resulted in high power demands on the electrical grid, especially when fast and ultra-fast or flash (at the bus-stop) charging are required. Consequently, a ground storage should be used in order to mitigate the peak power request period. This paper deals with an innovative and simple fast charging infrastructure based on supercapacitors, used to charge the energy storage system on board electric buses. According to the charging level of the electric bus, the proposed fast charging system is able to provide the maximum power of 180 kW without exceeding 30 s and without using DC–DC converters. In order to limit the maximum charging current, the electric bus is charged in three steps through three different connectors placed between the supercapacitors on board the bus and the fast charging system. The fast charging system has been carefully designed, taking into account several system parameters, such as charging time, maximum current, and voltage. Experimental tests have been performed on a fast charging station prototype to validate the theoretical analysis and functionality of the proposed architecture.


Sign in / Sign up

Export Citation Format

Share Document