scholarly journals The potential link between lake productivity and the invasive zooplankter Cercopagis pengoi in Owasco Lake (New York, USA)

2008 ◽  
Vol 3 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Meghan Brown ◽  
Melissa Balk
2003 ◽  
Vol 60 (2) ◽  
pp. 189-199 ◽  
Author(s):  
Jaime L. Toney ◽  
Donald T. Rodbell ◽  
Norton G. Miller

AbstractContinuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.


2011 ◽  
Vol 68 (5) ◽  
pp. 795-811 ◽  
Author(s):  
Ora E. Johannsson ◽  
Kelly L. Bowen ◽  
Kristen T. Holeck ◽  
Maureen G. Walsh

We investigated population responses of Mysis to ecosystem changes induced by invasion of dreissenids and predatory cladocerans, Cercopagis and Bythotrephes . Lake productivity declined as dreissenids invaded the offshore region. Whole-lake mysid biomass was compared before (early 1990s) and after (2002–2007) the invasion period; it declined 40%–45%. Abundance of young mysids and presence of a summer cohort increased with summer, epilmnetic, nighttime zooplankton biomass (i.e., food biomass index). Cercopagis + Bythotrephes biomass was negatively correlated with this index, implicating them in the mysid decline. Eggs per gravid female increased with autumn, total-water-column zooplankton biomass, reflecting the greater use of hypolimnetic waters by adults. Reproductive success was below replacement during the period 2002–2005. First-year mysid growth rate was maintained while population abundance declined, suggesting selection for individuals that feed effectively at low food concentrations. Mortality rates in the first and second years were dependent on cohort density, indicating that competition for food limited abundance in the first 2 years. Fish predation indices (smelt and alewife combined) were correlated positively with mortality rates and negatively with abundance in the third year. Thus, mysids cannot support as many fish in invaded compared with non-invaded lakes. They may also not be a stable food resource; unusual cohort losses occurred in some years.


Sign in / Sign up

Export Citation Format

Share Document