scholarly journals Improving the biological control of Persicaria perfoliata (Polygonaceae) using Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae)

2020 ◽  
Author(s):  
Jaewon Kim

2009 ◽  
Vol 51 (3) ◽  
pp. 450-457 ◽  
Author(s):  
Judith Hough-Goldstein ◽  
Mark A. Mayer ◽  
Wayne Hudson ◽  
George Robbins ◽  
Patricia Morrison ◽  
...  


2008 ◽  
Vol 25 (3) ◽  
pp. 164-165 ◽  
Author(s):  
Judith Hough-Goldstein ◽  
Ellen Lake

Abstract The introduced invasive vine mile-a-minute weed Persicaria perfoliata (formerly Polygonum perfoliatum) is continuing to spread throughout the Mid-Atlantic states and beyond, from its initial site of introduction near York, Pennsylvania. This weed frequently interferes with forest regeneration and until recently had few natural enemies attacking it in its introduced range. In 2004, a permit for field release of a host-specific Asian weevil Rhinoncomimus latipes was obtained, and the weevil has since been released in five states. The weevil has established well and is beginning to impact growth and development of the weed.



2011 ◽  
Vol 58 (3) ◽  
pp. 294-301 ◽  
Author(s):  
Ellen C. Lake ◽  
Judith Hough-Goldstein ◽  
Kimberley J. Shropshire ◽  
Vincent D’Amico






Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1578-1578
Author(s):  
D. K. Berner ◽  
C. A. Cavin ◽  
I. Erper ◽  
B. Tunali

Mile-a-minute (Persicaria perfoliata (L.) H. Gross; family: Polygonaceae) is an exotic annual barbed vine that has invaded the northeastern USA and Oregon (2). In July of 2010, in a search for potential biological control pathogens (3), diseased P. perfoliata plants were found along the Firtina River near Ardesen, Turkey. Symptoms were irregular dark necrotic lesions along leaf margins and smaller irregular reddish lesions on the lamellae of leaves. Symptomatic leaves were sent to the quarantine facility of FDWSRU, USDA, ARS in Ft. Detrick, MD, for pathogen isolation and testing. Symptomatic leaves were excised, surface disinfested in 0.615% NaOCl, and then incubated for 2 to 3 days in sterile moist chambers at 20 to 25°C. Numerous waxy sub-epidermal acervuli with 84-μm-long (mean) black setae were observed in all of the lesions after 2 to 3 days of incubation. Conidiophores within acervuli were simple, short, and erect. Conidia were one-celled, hyaline, guttulate, subcylindrical, straight, 12.3 to 18.9 × 3.0 to 4.6 μm (mean 14.3 × 3.7 μm). Pure cultures were obtained by transferring conidia onto 20% V-8 juice agar. Appressoria, formed 24 h after placing conidia on dialysis membrane over V-8 juice agar, were smooth, clavate, aseptate, regular in outline, and 6.4 to 10.0 × 5.1 to 7.2 μm (mean 7.5 × 6.6 μm). These characters conformed to the description of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (1). A voucher specimen was deposited in the U.S. National Fungus Collections (BPI 882461). Nucleotide sequences for the internal transcribed spacers (ITS 1 and 2), directly sequenced from ITS 1 and ITS 4 standard primers (4), were deposited in GenBank (JN887693). A comparison of these sequences with ITS 1 and 2 sequences of the C. gloeosporioides epitype IMI 356878 (GenBank EU 371022) (1) using BLAST found 479 of 482 identities with no gaps. Conidia from 14-day-old cultures, in an aqueous suspension of 1.0 × 106 conidia ml–1, were spray-inoculated onto healthy stems and leaves of twenty 30-day-old P. perfoliata plants. Another 10 plants were not inoculated. All plants were placed in a dew chamber at 25°C for 16 h with no lighting. They were then placed in a 20 to 25°C greenhouse with a 14-h photoperiod. Light was generated using 400W sodium vapor lights. Lesions developed on leaves and stems of all inoculated plants after 7 days, and symptoms were the same as observed in the field. Each plant was rated weekly for disease severity on a 0 to 10 rating scale where 0 = no disease symptoms and 10 = 100% symptomatic tissue. After 28 days, the average disease rating of inoculated plants was 3.95 ± 0.94. No disease developed on noninoculated plants. C. gloeosporioides was reisolated from all inoculated plants. Host range tests will determine the potential of this isolate as a biological control agent for P. perfoliata. To our knowledge, this is the first report of anthracnose caused by C. gloeosporioides on P. perfoliata. References: (1) P. F. Cannon et al. Mycotaxon 104:189, 2008. (2) J. T. Kartesz and C. A. Meacham. Synthesis of the North American Flora, Version 1.0., North Carolina Botanical Garden, Chapel Hill, N.C. 1999. (3) D. L. Price et al. Environ. Entomol. 32:229, 2003. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, CA, 1990.





2015 ◽  
Vol 83 ◽  
pp. 68-74 ◽  
Author(s):  
Scott H. Berg ◽  
Judith Hough-Goldstein ◽  
Ellen C. Lake ◽  
Vincent D’Amico


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).



Sign in / Sign up

Export Citation Format

Share Document