scholarly journals Potassium status of sod-podzolic loamy soils

2021 ◽  
Vol 2(26) ◽  
pp. 233-243
Author(s):  
V.G. Sychev ◽  
◽  
L.V. Nikitina ◽  

Potassium is one of the essential plant nutrients. Despite numerous surveys, some issues related to the transformation of potassium in soils require additional study. The purpose of the research was to study the potassium transformation in sod-podzolic loamy soils and its entry into plants influenced by various farming methods in long-term field experiments of different duration. Field experiments were conducted at the experimental station of the FSBSI “Pryanishnikov Institute of Agrochemistry” located in the Moscow region, Domodedovo district, village of Barybino. To study the potassium status, an archive of soil samples created in the Geographical Network of Experiments with Fertilizers was used. Soil samples were collected in long-term field experiments after their closure (experiment SH-8, year of laying – 1971–1973, duration – 14 years) or modification (experiment SH-5, year of laying – 1964-1966, duration – 28 years). The experimental schemes included the systematic introduction of various fertilizing systems (organic, mineral, organo-mineral) and the determination of their impact on crop rotation productivity and soil fertility. Previous studies have shown that the formation of the crop yield in the context of long-term potassium deficiency burdened by the absence of fertilization was chiefly due to the consumption of non-exchangeable potassium by plants. For the 14–year period, the annual use of non-exchangeable potassium in the control and NP variants was 62.0-63.0 kg K2O/ha. As potassium reserves in the soil of the control variant become depleted (longer experiment), its assimilation from the non-exchangeable form decreased by 1.6 times and amounted to 39.5 kg K2O/ha. The use of a mineral fertilizing system (potassium dose < 90 kg/ha for 14 years) increased the annual mobilization of the non-exchangeable form of the element (over 100 kg/ha of K2O). The transformation of soil potassium forms that differed in the degree of their availability for plants was determined by the fertilizing systems, the doses of potassium fertilizers in the systems, as well as the duration of the experiments.

2018 ◽  
Vol 64 (No. 6) ◽  
pp. 255-259 ◽  
Author(s):  
Zbíral Jiří ◽  
Smatanová Michaela ◽  
Němec Pavel

Several sets of soil samples were chosen to demonstrate the applicability of the Mehlich 3 extractant for the determination of sulphur (S) in soils. Archived samples from 139 basal soil monitoring plots (BSMS) sampled in 1995 and 2013, samples from eleven long-term field trials sampled in 1981 and 2017, 1167 soil samples from the areas vulnerable to S losses and 720 samples from the non-vulnerable areas sampled in 2010 were chosen for the experiments. Mehlich 3 clearly showed a statistically highly significant decrease in the soil S content caused by reduction of SO<sub>2</sub> emissions in the long-term field experiments from 33 mg/kg in 1981 to 8 mg/kg in 2017 for the median of the untreated controls. Similar results were obtained for BSMS samples, where an average decrease from 26 mg/kg in 1995 to 17 mg/kg in 2013 was found. Mehlich 3 also showed that more than 52% of samples from the areas vulnerable to S losses were in a very low content category in contrast to only 3% of soils from the other areas. Mehlich 3 clearly proved the capacity to distinguish changes in the content of soil S in all studied cases.  


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 344-352 ◽  
Author(s):  
J. Balík ◽  
M. Kulhánek ◽  
J. Černý ◽  
J. Száková ◽  
D. Pavlíková ◽  
...  

The aim of this work was to estimate the changes in contents of different sulfur (S) fractions in soils under conditions of lowering inputs of S from emissions together with the influence of application of manure and mineral fertilizers. Soil samples from long-term field experiments were used for this purpose. The samples were taken from 10 sites from precise long-term field experiments with different soil-climatic conditions in the Czech Republic. The samples were analyzed using the following fractionation: (i) water soluble S (H<sub>2</sub>O extracts), (ii) sorbed S (0.032M NaH<sub>2</sub>PO<sub>4</sub> extracts) and (iii) S occluded with carbonates (1M HCl extract). Furthermore, the concentration of total S (S<sub>tot</sub>) and organic S (S<sub>org</sub>) was determined. Soil samples were taken in the years 1981 and 2007. During 26 years a decrease of S<sub>tot</sub> by about 3–8%, water soluble S by 65–68% and sorbed S by 39–44% were observed in the topsoil of the evaluated soils. Furthermore, a low increase in the content of organic S was observed. The estimated ratio of S<sub>org</sub> reached 78.7–80.9% from S<sub>tot</sub> in the year 1981 and 87.7–89.8% in 2007. Farmyard manure (40 t/ha) applied every 4 years did not have a significant influence on S fractions and S<sub>tot</sub> contents in soils; intensive S fertilizing increased S<sub>tot</sub> and mobile S forms contents in soils. Very close correlations were obtained especially between S<sub>tot</sub> and water soluble S and organic S.


2021 ◽  
Vol 126 ◽  
pp. 126263
Author(s):  
Mario Fontana ◽  
Gilles Bélanger ◽  
Juliane Hirte ◽  
Noura Ziadi ◽  
Saïd Elfouki ◽  
...  

2003 ◽  
Vol 49 (5) ◽  
pp. 465-483 ◽  
Author(s):  
Katalin Debreczeni ◽  
Martin Körschens

2018 ◽  
Vol 218 ◽  
pp. 158-170 ◽  
Author(s):  
Theresa Zicker ◽  
Sabine von Tucher ◽  
Mareike Kavka ◽  
Bettina Eichler-Löbermann

Sign in / Sign up

Export Citation Format

Share Document