Active control of the scattered radiation with a reflecting surface

2019 ◽  
Vol 67 (3) ◽  
pp. 190-196
Author(s):  
Ning Han

Based on a prediction method of the scattered sound pressure, an active control system was proposed in previous work for the three-dimension scattered radiation, where all the relevant simulations and experiments were implemented in three-dimensional free sound field. However, for practical applications, such as the anti-eavesdropping system or the stealth system for submarines, the sound field conditions are usually complex, and the most common case is the one with reflecting surface. It is questionable whether the previous control system is still effective in non-free sound field, or what improvements should be operated to ensure the control effect. In this article, based on the mirror image principle, two methods of calculating the control source strengths are proposed for the scattered radiation control, and numerical simulations with one-channel and multi-channel system are implemented to detect the corresponding control effect. It is seen that the local active control for the scattered radiation is still effective, and the reduction of the sound pressure level as well as the control area is extended with the increasement of the error sensors and control sources.

2014 ◽  
Vol 1082 ◽  
pp. 517-520
Author(s):  
Da Lin Chen ◽  
Nan Chen

This paper demonstrates an investigation about the active control of sound radiation in the enclosure cavity consists of two flexible plates. One of the flexible plates is driven by a point force to generate the primary sound field in the cavity, and using some point forces which are located at different locations on the receiving plate to suppressing the panel vibration and then to minimum the cavity sound pressure level (SPL); meanwhile some actuators are located on the other panel surfaces to reduce the sound pressure level at some frequencies that can’t be well reduced by only effect on one panel. The better result shows the possibility of applying distributed cooperative control method to the structural-acoustic coupled system.


2011 ◽  
Vol 486 ◽  
pp. 103-106
Author(s):  
Ming Gang Zhu ◽  
Guo Yong Jin ◽  
Na Feng

This paper is concerned with the numerical study of active control of interior noise induced by the flexible plates in a coupled enclosure. A cabin-like enclosure with four acoustically rigid walls and two flexible plates is considered. Two types of actuators are used, i.e. acoustic actuators and distributed lead zirconate titanate piezoelectric (PZT) actuators instead of point force actuators. With the control system designed to globally reduce the sound field, different control configurations are considered, including the structural actuator on the incident panel, actuator on the receiving panel, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control system corresponding to each configuration are studied numerically, and desirable placement problem of structural actuators in terms of total potential energy reduction are of particular interest.


2014 ◽  
Vol 574 ◽  
pp. 546-550
Author(s):  
Da Lin Chen ◽  
Nan Chen

This paper analytically demonstrates the use of some point forces actuators applied on different flexible plates to reduce the radiated sound in the cavity. A rectangular enclosure involving two opposite flexible plates is considered. We want to get the dominant factors that impact the coupling effects and the noise reduction in the cavity with the ASAC method, so we make some point forces located on different plates and to compare their different control effect. The formula was derivate to calculate the sound pressure in the enclosure when there some point forces applied on the flexible plates, and then analyzed and get the simulation of the sound pressure level (SPL) response in the local cavity sound field. The paper indicated that applying distributed cooperative control method can get the better reduction of noise.


Author(s):  
W Q Jia ◽  
J Chen ◽  
C Yang ◽  
Z Y Wang

In order to overcome the limitation of traditional near-field acoustical holography (NAH), that the sound field on one side of the holographic surface must be free, a sound field separation technique based on single holographic surface and wave superposition method (WSM) is proposed. According to the WSM, the field on and near the measurement surface may be approximated by the field produced by virtual source points placed on a surface inside the structure. The source strengths are evaluated by applying boundary conditions on the measurement surface. Here, the ‘pseudo’ sound pressure of the reconstruction surface is first obtained based on the principle of sound field mirror image and WSM, then the sound pressure of the target sound source acting on the holographic surface is separated by the sound pressures of the holographic surface and the reconstruction surface, and the sound field separation is realized. The technique requires the inversion of the Green's function matrix, which may be ill-conditioned. The Tikhonov regularization method is used to invert it, and the value of the regularization parameter is determined by the L-curve criteria. Through the numerical simulation and experiment, the results show the validity and efficiency of this technique.


2019 ◽  
Vol 67 (5) ◽  
pp. 350-362
Author(s):  
J. M. Ku ◽  
W. B. Jeong ◽  
C. Hong

The low-frequency noise generated by the vibration of the compressor in the machinery room of refrigerators is considered as annoying sound. Active noise control is used to reduce this noise without any change in the design of the compressor in the machinery room. In configuring the control system, various signals are measured and analyzed to select the reference signal that best represents the compressor noise. As the space inside the machinery room is small, the size of a speaker is limited, and the magnitude of the controller transfer function is designed to be small at low frequencies, the controller uses FIR filter structure converged by the FxLMS algorithm using the pre-measured time signal. To manage the convergence speed for each frequency, the frequency-weighting function is applied to FxLMS algorithm. A series of measurements are performed to design the controller and to evaluate the control performance. After the control, the sound power transmitted by the refrigerator is reduced by 9 dB at the first dominant frequency (408 Hz in this case) and 3 dB at the second dominant frequency (459 Hz here), and the overall sound power decreases by 2.6 dB. Through this study, an active control system for the noise generated by refrigerator compressors is established.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2747
Author(s):  
Xiangwen Ju ◽  
Jun Xiao ◽  
Dongli Wang ◽  
Cong Zhao ◽  
Xianfeng Wang

The stringer-stiffened structure is widely used due to its excellent mechanical properties. Improving the manufacturing quality of stringer-stiffened structure which have complex geometry is important to ensure the bearing capacity of aviation components. Herein, composite hat-stiffened composite structures were manufactured by different filling forms and bladders with various properties, the deformation of silicone rubber bladder in co-curing process was studied by using the finite element method. The thickness measurement at different positions of the hat-stiffened structure was performed to determine the best filling form and bladder property. Moreover, in view of the detection difficulties in R-zone of stringer, numerical simulation was performed to get the sound pressure and impulse response of at the R-zone of stringer by Rayleigh integration method, and an effective equipment which could stably detect the manufacturing quality of R-zone was designed to verify the correctness of sound field simulation and realize the detection of stringer. With the optimum filling form and bladder properties, hat-stiffened composites can be manufactured integrally with improved surface quality and geometric accuracy, based on co-curing process.


Author(s):  
Yajing Wang ◽  
Liqun Wu ◽  
Yaxing Wang ◽  
Yafei Fan

A new method of removing waste chips is proposed by focusing on the key factors affecting the processing quality and efficiency of high energy beams. Firstly, a mathematical model has been established to provide the theoretical basis for the separation of solid–liquid suspension under ultrasonic standing wave. Secondly, the distribution of sound field with and without droplet has been simulated. Thirdly, the deformation and movement of droplets are simulated and tested. It is found that the sound pressure around the droplet is greater than the sound pressure in the droplet, which can promote the separation of droplets and provide theoretical support for the ultrasonic suspension separation of droplet; under the interaction of acoustic radiation force, surface tension, adhesion, and static pressure, the droplet is deformed so that the gas fluid around the droplet is concentrated in the center to achieve droplet separation, and the droplet just as a flat ball with a central sag is stably suspended in the acoustic wave node.


2012 ◽  
Vol 195-196 ◽  
pp. 364-369 ◽  
Author(s):  
Jin Hua Zhao ◽  
Li Li Yu ◽  
Chun Hui ◽  
Bin Feng Huang ◽  
Chao Li ◽  
...  

In this paper, numerical simulation of sound field with short focal length is performed, which is based on spheroidal beam equation (SBE) in frequency-domain for transducer with a wide aperture angle. And we made some experiments on vitro bovine liver to explore the characteristic of sound pressure and-3dB sound focal region at different positions of incident interface. It is found that with a fixed curvature radius if the focal length is shorter under the skin, the amplitude of sound pressure will be higher on the focus and the shape of-3dB sound focal region will be smaller. When the incident interface is in the range of planar wave, nonlinear effect is strong and the focus will change with the interface position. Especially when the position is near to transition location between planar wave and spheroidal wave, the nonlinear effect is lowered. While the focus is closer to the sound source so as to burn the scarfskin easily. When the interface is in the range of spheroidal wave, the focus position changes little but the side lobe effect due to refraction is obvious. And the focusing performance of transducer will be affected. The experimental results validate the accuracy of theoretical results. It is concluded that the position of incident interface should be selected reasonably with short focal length in the treatment of superficial tissue.


Sign in / Sign up

Export Citation Format

Share Document