Measurement of turbulent boundary layer unsteady wall pressures beneath elastomer layers of various thicknesses on a plate

2021 ◽  
Vol 69 (3) ◽  
pp. 182-198
Author(s):  
Cory J. Smith ◽  
Dean E. Capone ◽  
Timothy A. Brungart ◽  
William K. Bonness

The attenuation of turbulence-inducedwall pressure fluctuations through elastomer layers is studied experimentally and analytically. Wall pressure statistics are measured downstream from a backward facing step, with no elastomer present and beneath 2-, 3- and 4-mm-thick elastomers in a water tunnel facility. In the absence of an elastomer layer, the wall pressure spectra, cross-spectra and velocity statistics measured at the various locations downstream from the backward facing step are in excellent agreement with those reported in the archival literature. The streamwise coherence measured beneath the elastomer layers is higher than that measured in the absence of an elastomer layer, an effect which increases with increasing elastomer thickness. It is speculated that this increase in coherence level is due to the ability of the elastomer to support shear stresses, which effectively increases the area over which an eddy influences the normal stresses measured by the pressure sensors. The high-frequency filtering of the elastomers is also observed in the coherence at the smallest streamwise separation. The attenuation of the turbulent boundary layer wall pressure fluctuations through the elastomer layer using an analytical elastomer transfer function is in excellent agreement with the attenuation measured experimentally through all thicknesses of elastomer and at all the free stream velocities at which the experiments are performed.

Author(s):  
Steven D. Young ◽  
Timothy A. Brungart ◽  
Gerald C. Lauchle

This paper theoretically and experimentally examines the effect of a downstream ventilated gas cavity on the spectrum of turbulent boundary layer wall pressure fluctuations. The theoretical model predicts that the ratio of the point spectrum of the turbulent boundary layer wall pressure fluctuations upstream of a ventilated gas cavity to the blocked point pressure spectrum decays rapidly to zero as the cavity origin is approached and undergoes oscillations in amplitude that relax to unity as the quantity ωx/Uc goes to infinity upstream of the cavity. Here ω is the radian frequency, x is the distance upstream from the cavity origin and Uc is the convection velocity. A water tunnel experiment was performed to investigate the theoretical predictions. Dynamic wall pressure sensors were mounted flush to the surface of a flat plate at various distances upstream from a rearward facing step. Carbon dioxide gas was injected into the separated flow region downstream of the step to form a ventilated cavity. The water tunnel measurements were unable to verify the reduction in the amplitude of the turbulent boundary layer wall pressure fluctuations as the step and cavity were approached but did verify the fundamental oscillation predicted by the theoretical model and its relaxation to unity as ωx/Uc went to infinity upstream of the step and cavity.


Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


2000 ◽  
Vol 108 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Timothy A. Brungart ◽  
Wayne J. Holmberg ◽  
Arnold A. Fontaine ◽  
Steven Deutsch ◽  
Howard L. Petrie

Sign in / Sign up

Export Citation Format

Share Document