Acoustic analysis of impact sound on vibrating circular membranes

2021 ◽  
Vol 263 (3) ◽  
pp. 3378-3385
Author(s):  
Evaggelos Kaselouris ◽  
Chrysoula Alexandraki ◽  
Yannis Orphanos ◽  
Makis Bakarezos ◽  
Michael Tatarakis ◽  
...  

A finite element method (FEM) - boundary element method (BEM) model is developed to compute the sound generated by of a force acting on a circular membrane (drumhead). A vibro-acoustic analysis that combines modal FEM analysis, a FEM steady state dynamic analysis (SSD), considering harmonic loading and boundary element acoustics, is performed. The drumhead vibrates due to the force impact and the sound is emitted in the air. The vibration of structural response is initially computed, and the obtained results are set to be the boundary conditions of the acoustic analysis in the vibro-acoustic simulation. The radiated sound can be computed at any point of the solution domain. Various materials used by drumhead manufacturers are tested and a parametric analysis focusing on the mesh density of the models is presented. The impact sound and the acoustical characteristics of the simulated test cases are evaluated. The Rayleigh method is also applied to the acoustic simulations and is further compared to the BEM simulation results. The outcomes of this study may be further used as reverse engineering inputs, to machine learning models for the estimation of the physical and mechanical parameters of drumheads from audio signals.

Author(s):  
Steven J. Newhouse ◽  
Ian C. Mathews

Abstract The boundary element method is an established numerical tool for the analysis of acoustic pressure fields in an infinite domain. There is currently no well established method of estimating the surface pressure error distribution for an arbitrary three dimensional body. Hierarchical shape functions have been used as a highly effective form of p refinement in many finite and boundary element applications. Their ability to be used as an error estimator in acoustic analysis has never been fully exploited. This paper studies the influence of mesh density and interpolation order on several acoustic scattering problems. A hierarchical error estimator is implemented and its effectiveness verified against the spherical problem. A coarse cylindrical mesh is then refined using the new error estimator until the solution has converged. The effectiveness of this analysis is shown by comparing the error indicators derived during the analysis to the solution generated from a very fine cylindrical mesh.


2017 ◽  
Vol 42 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Wanyi Tian ◽  
Lingyun Yao ◽  
Li Li

Abstract Nowadays, the finite element method (FEM) - boundary element method (BEM) is used to predict the performance of structural-acoustic problem, i.e. the frequency response analysis, modal analysis. The accuracy of conventional FEM/BEM for structural-acoustic problems strongly depends on the size of the mesh, element quality, etc. As element size gets greater and distortion gets severer, the deviation of high frequency problem is also clear. In order to improve the accuracy of structural-acoustic problem, a smoothed finite-element/boundary-element coupling procedure (SFEM/BEM) is extended to analyze the structural-acoustic problem consisting of a shell structure interacting with the cavity in this paper, in which the SFEM and boundary element method (BEM) models are used to simulate the structure and the fluid, respectively. The governing equations of the structural-acoustic problems are established by coupling the SFEM for the structure and the BEM for the fluid. The solutions of SFEM are often found to be much more accurate than those of the FEM model. Based on its attractive features, it was decided in the present work to extend SFEM further for use in structural-acoustic analysis by coupling it with BEM, the present SFEM/BEM is implemented to predict the vehicle structure-acoustic frequency response analysis, and two numerical experiments results show that the present method can provide more accurate results compared with the standard FEM/BEM using the same mesh. It indicates that the present SFEM/BEM can be widely applied to solving many engineering noise, vibration and harshness (NVH) problems with more accurate solutions.


2020 ◽  
Vol 10 (16) ◽  
pp. 5712
Author(s):  
Venanzio Giannella ◽  
Francesco Branda ◽  
Jessica Passaro ◽  
Giuseppe Petrone ◽  
Mattia Barbarino ◽  
...  

This work illustrates the development of passive noise control (PNC) improvements of aircraft headrests to enhance the acoustic comfort for passengers. Two PNC improvements were studied with the aim of reducing the noise perceived by passengers during flight. Two headrest configurations, with and without the lateral caps, and two different materials, a traditional foam and an innovative Silica/Polyvinylpyrrolidone (PVP) woven non-woven mat, were considered, and compared in terms of sound pressure level (SPL) perceived by passengers. Boundary element method (BEM) models were built up to evaluate the acoustic performances of different headrest configurations, varying in terms of shape and textile. A spherical distribution of monopole sources surrounding the headrests was considered as acoustic load, in such a way as to recreate a diffuse acoustic field simulating the cabin noise perceived by passengers during cruise conditions. The impact of the two PNC improvements was analyzed to envisage some general guidelines useful to design advanced headrests from the acoustic viewpoint.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 435
Author(s):  
Hasna Akarni ◽  
Laila El Aarabi ◽  
Laila Mouakkir ◽  
Soumia Mordane

The aim of this work is to propose a numerical study of the interaction of a wave-horizontal plate fixed and completely immersed in a flat-bottomed tank with a uniform current flowing in the same direction as the incident wave. We investigate in particular the effect of the plate at minimizing the impact of the wave on the coast of beaches by studying the free surface elevation and the reflection coefficient, as well as the influence of the various geometrical parameters on the latter, taking into account the presence of the current. The numerical method used in this study is the boundary element method (BEM), and the results obtained will be confronted with experimental and analytical data existing in the literature.


2007 ◽  
Vol 2007 (0) ◽  
pp. _312-1_-_312-6_
Author(s):  
Jun SHIMAMOTO ◽  
Hiroshi MATSUHISA ◽  
Hideo UTSUNO ◽  
Keisuke YAMADA

Sign in / Sign up

Export Citation Format

Share Document