Mean vertical motion and non-adiabatic heat sources over India during the monsoon

Tellus ◽  
1962 ◽  
Vol 14 (2) ◽  
pp. 212-220 ◽  
Author(s):  
P. K. Das
Keyword(s):  
Author(s):  
Yuhi Nakamura ◽  
Yukari N. Takayabu

Abstract This study investigates precipitation amounts and apparent heat sources, which are coupled with equatorial Kelvin waves and equatorial Rossby waves, using TRMM PR level 2 data products. The synoptic structures of wave disturbances are also studied using the ERA5 reanalysis dataset. We define the wave phase of equatorial waves based on FFT filtered brightness temperature and conduct composite analyses. Rossby waves show a vertically upright structure and their upright vortices induce large amplitude column water vapor (CWV) anomalies. Precipitation activity is almost in phase with CWV, and thus is consistent with a moisture mode. Kelvin waves, on the other hand, indicate a nearly quadrature phase relationship between temperature and vertical velocity, like gravity wave structure. Specific humidity develops from near the surface to middle troposphere as the Kelvin wave progresses. A clear negative CWV anomaly also does not exist despite the existence of negative precipitation anomalies. Convective activity corresponds well with its tilting structure of moisture and modulates the phase relationship between temperature and vertical motion. For both wave cases, apparent heat sources can amplify available potential energy despite of the difference of coupling mechanisms of these two waves; precipitation is driven by CWV fluctuation for the Rossby wave case, and by buoyancy-based fluctuations for the Kelvin wave case. These can be an observational evidence of actual coupling processes that is comparable to previous idealized studies.


Sign in / Sign up

Export Citation Format

Share Document