STUDY ON METAL HYDRIDES (Mm(La0.6-0.8)Ni0.4Co0.6Mn0.2Al0.2 (TL-492) and LaNi5) FOR HYDROGEN STORAGE CONTAINER USING DISCHARGED WATER FROM OTEC AND FUEL CELL AS HEAT SOURCES

Equipment ◽  
2006 ◽  
Author(s):  
S. C. Bae ◽  
Y. Yang ◽  
Y. Ikegami
2011 ◽  
Vol 9 (5) ◽  
pp. 761-775 ◽  
Author(s):  
Ivan Saldan

AbstractIn contrast to the traditional metal hydrides, in which hydrogen storage involves the reversible hydrogen entering/exiting of the host hydride lattice, LiBH4 releases hydrogen via decomposition that produces segregated LiH and amorphous B phases. This is obviously the reason why lithium borohydride applications in fuel cells so far meet only one requirement — high hydrogen storage capacity. Nevertheless, its thermodynamics and kinetics studies are very active today and efficient ways to meet fuel cell requirements might be done through lowering the temperature for hydrogenation/dehydrogenation and suitable catalyst. Some improvements are expected to enable LiBH4 to be used in on-board hydrogen storage.


Author(s):  
Volodymyr A. Yartys ◽  
Mykhaylo V. Lototskyy ◽  
Vladimir Linkov ◽  
Sivakumar Pasupathi ◽  
Moegamat Wafeeq Davids ◽  
...  

2007 ◽  
Vol 1041 ◽  
Author(s):  
Jason Graetz ◽  
James J Reilly ◽  
James Wegrzyn

AbstractThe emergence of a Hydrogen Economy will require the development of new media capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides, where hydrogen is chemically bonded to the metal atoms in the bulk, offer some hope of overcoming the challenges associated with hydrogen storage. Many of the more promising hydrogen materials are tailored to meet the unique demands of a low temperature automotive fuel cell and are therefore either entirely new (e.g. in structural or chemical composition) or in some new form (e.g. morphology, crystallite size, catalysts). This proceeding presents an overview of some of the challenges associated with metal hydride hydrogen storage and a few new approaches being investigated to address these challenges.


2001 ◽  
Vol 676 ◽  
Author(s):  
W. Oelerich ◽  
T. Klassen ◽  
R. Bormann

ABSTRACTHydrogen is the ideal means of energy storage for transportation and conversion of energy in a comprehensive clean-energy concept. However, appropriate storage facilities, both for stationary and for mobile applications, are complicated, because of the very low boiling point of hydrogen (20.4 K at 1 atm) and its low density in the gaseous state (90 g/m3). Furthermore, the storage of hydrogen in liquid or gaseous form imposes safety problems, in particular for mobile applications, e.g. the future zero-emission vehicle. Metal hydrides are a safe alternative for H-storage and, in addition, have a high volumetric energy density that is about 60% higher than that of liquid hydrogen. Mg hydride has a high storage capacity by weight and is therefore favoured for automotive applications. However, so far light metal hydrides have not been considered competitive because of their rather sluggish sorption kinetics. Filling a tank could take several hours. Moreover, the hydrogen desorption temperature of about 300 °C is rather high for most applications. A breakthrough in hydrogen storage technology was achieved by preparing nanocrystalline hydrides using high-energy ball milling. These new materials show very fast aband desorption kinetics within few minutes, thus qualifying lightweight Mg-based hydrides for storage application. In this paper recent detailed results on the sorption behaviour of nanocrystalline Mg and Mg-based alloys are presented. In a following research effort the sorption kinetics of nanocrystalline Mg has been further enhanced by catalyst additions. Furthermore, different transition metals have been added to Mg to achieve a thermodynamic destabilisation of the hydride, thus lowering the desorption temperatures to about 230 °C. The newly developed materials are currently being tested in prototype storage tanks.


Materia Japan ◽  
2013 ◽  
Vol 52 (7) ◽  
pp. 328-332
Author(s):  
Yumiko Nakamura ◽  
Kouji Sakaki ◽  
Kohta Asano ◽  
Hyunjeong Kim ◽  
Itoko Matsumoto ◽  
...  

Author(s):  
Saeed Kazemiabnavi ◽  
Aneet Soundararaj ◽  
Haniyeh Zamani ◽  
Bjoern Scharf ◽  
Priya Thyagarajan ◽  
...  

In recent years, there has been increased interest in fuel cells as a promising energy storage technology. The environmental impacts due to the extensive fossil fuel consumption is becoming increasingly important as greenhouse gas (GHG) levels in the atmosphere continue to rise rapidly. Furthermore, fuel cell efficiencies are not limited by the Carnot limit, a major thermodynamic limit for power plants and internal combustion engines. Therefore, hydrogen fuel cells could provide a long-term solution to the automotive industry, in its search for alternate propulsion systems. Two most important methods for hydrogen delivery to fuel cells used for vehicle propulsion were evaluated in this study, which are fuel processing and hydrogen storage. Moreover, the average fuel cost and the greenhouse gas emission for hydrogen fuel cell (H2 FCV) and gasoline fuel cell (GFCV) vehicles are compared to that of a regular gasoline vehicle based on the Argonne National Lab’s GREET model. The results show that the average fuel cost per 100 miles for a H2 FCV can be up to 57% lower than that of regular gasoline vehicles. Moreover, the obtained results confirm that the well to wheel greenhouse gas emission of both H2 FCV and GFCV is significantly less than that of regular gasoline vehicles. Furthermore, the investment return period for hydrogen storage techniques are compared to fuel processing methods. A qualitative safety and infrastructure dependency comparison of hydrogen storage and fuel processing methods is also presented.


Sign in / Sign up

Export Citation Format

Share Document