equatorial rossby waves
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Shuguang Wang ◽  
Juan Fang ◽  
Xiaodong Tang ◽  
Zhe-Min Tan

AbstractConvectively coupled equatorial Rossby waves (ERW) modulate tropical cyclone activities over tropical oceans. This study presents a survey of the statistical relationship between intraseasonal ERWs and tropical cyclone genesis (TCG) over major global TC basins using four-decade-long outgoing longwave radiation (OLR) and TC best-track datasets. Intraseasonal ERWs are identified from the OLR anomalies using an empirical orthogonal function (EOF) analysis method without imposing equatorial symmetry. We find that westward-propagating ERWs are most significant in four tropical ocean basins over the summer hemisphere and that ERWs exhibit similar northeast-southwest (southeast-northwest) tilted phase lines in the northern (southern) hemisphere, with an appreciable poleward advance of wave energy in most TC basins. The EOF-based ERW indices quantitatively show that ERWs significantly modulate TC genesis. The convectively active (suppressed) phases of ERWs coincide with increased (reduced) TCG occurrences. The TCG modulation by ERWs achieves the maximum where the ERWs propagate through the climatological TCG hotspots. As a result, the total number of TCG occurrences in the TC basins varies significantly according to the ERW phase. The ERW-TCG relationship is significant over the northwestern Pacific Ocean, northeastern Pacific Ocean, and the northern Indian Ocean during the northern summer seasons. In the southern summer season, the ERW-TCG relationship is significant over the southern Indian Ocean, Indonesian-Australia basin, and the southwestern Pacific Ocean. However, ERW activities are weak in the main TC development region of the Atlantic Ocean; and the impact on Atlantic TCG appears to be insignificant.


Author(s):  
Sebastian Brune ◽  
Maria Esther Caballero Espejo ◽  
David Marcolino Nielsen ◽  
Hongmei Li ◽  
Tatiana Ilyina ◽  
...  

Abstract In the Pacific Ocean, off-equatorial Rossby waves, initiated by atmosphere-ocean interaction, modulate the inter-annual variability of the thermocline. In this study, we explore the resulting potential gain in predictability of central tropical Pacific primary production, which in this region strongly depends on the supply of macronutrients from below the thermocline. We use a decadal prediction system based on the Max Planck Institute Earth system model (MPI-ESM) to demonstrate that for the time period 1998-2014 properly initialized Rossby waves explain an increase in predictability of net primary productivity in the off-equatorial central tropical Pacific. We show that, for up to 5 years in advance, predictability of net primary productivity derived from the decadal prediction system is significantly larger than that derived from persistence alone, or an uninitialized historical simulation. The predicted signal can be explained by the following mechanism: off-equatorial Rossby waves are initiated in the eastern Pacific and travel towards the central tropical Pacific on a time scale of 2 to 6 years. On their arrival the Rossby waves modify the depths of both thermocline and nutricline, which is fundamental to the availability of nutrients in the euphotic layer. Local upwelling transports nutrients from below the nutricline into the euphotic zone, effectively transferring the Rossby wave signal to the near-surface ocean. While we show that skillful prediction of central off-equatorial tropical Pacific net primary productivity is possible, we open the door for establishing predictive systems for food web and ecosystem services in that region.


2021 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang ◽  
Yu Ouyang ◽  
Hui Wang ◽  
Shaobo Qiao ◽  
...  

Abstract Accurate prediction of global land monsoon rainfall on a subseasonal (2-8 weeks) time scale has become a worldwide demand. Current forecasts of weekly-mean rainfall in most monsoon regions, however, have limited skills beyond two weeks. Given that two-thirds of the world’s population lives in the monsoon regions, this challenge calls for a more profound understanding of monsoon intraseasonal variability (ISVs). Our comparison of individual land monsoons shows that the high-frequency (HF; 8-20 days) ISV, crucial for the Week 2 and Week 3 predictions, accounts for about 53-70% of the total (8-70 days) ISV in various monsoons, and the low-frequency (LF; 20-70 days) ISV has a relatively high contribution over Australia (AU; 47%), South Asia (SA; 43%), and South America (SAM; 40%) monsoons. The leading modes of HFISVs in Northern Hemisphere (NH) monsoons primarily originate from convectively coupled equatorial Rossby waves (Asia), mixed Rossby-gravity waves (North America, NAM), and Kelvin waves (northern Africa, NAF), while from mid-latitude wave trains for Southern Hemisphere (SH) monsoons and East Asian (EA) monsoon. The Madden-Julian Oscillation (MJO) directly regulates LFISVs in the Asian-Australian monsoon while affecting the American and African monsoons by exciting Kelvin waves and mid-latitude teleconnections. During the past four decades, the HF (LF) ISVs have considerably intensified over the Asian (Asian-Australian) monsoon but weakened over the American (SAM) monsoon. Subseasonal-to-seasonal (S2S) prediction models do exhibit higher subseasonal (Weekly 2-Weekly 4) prediction skills over SA, AU, and SAM monsoons that have larger LFISV contributions than the other monsoons. The results suggest an urgent need to improve the simulation of convectively coupled equatorial waves and two-way interactions between regional monsoon ISVs and mid-latitude processes and between MJO and regional monsoons, especially under the global warming scenarios.


2021 ◽  
Vol 893 (1) ◽  
pp. 012015
Author(s):  
P Wu ◽  
Y Fukutomi ◽  
K Kikuchi

Abstract This study examined the cause of a record torrential rain event over the western coast of Sumatra Island in March 2016. The influence of atmospheric equatorial waves (EWs) and the characteristics of the EWs were investigated. Analysis of the Japanese 55-year Reanalysis data (JRA-55) and precipitation data from the Global Precipitation Measurement (GPM) satellite showed that the event was caused by the combined effects of Kelvin waves, equatorial Rossby waves, and westward inertio-gravity (WIG) waves. An examination of the characteristics of the EWs revealed that the Kelvin waves had longitudinal scales of ~6,000 km, with a period of ~6 days and phase speed of ~12 m s-1, which was typical of the convectively coupled Kelvin waves in this region. The WIG waves had a scale of ~2,500 km, with a period of 2.5 days and a relatively fast phase speed of 12~13 m s-1. Heavy precipitation occurred when an eastward Kelvin wave from the Indian Ocean encountered a westward inertio-gravity (WIG) over Sumatra Island. It was concluded that along with the Kelvin and equatorial Rossby waves, the WIG waves might have played a major role in the formation of the extreme precipitation event.


Author(s):  
Yuhi Nakamura ◽  
Yukari N. Takayabu

Abstract This study investigates precipitation amounts and apparent heat sources, which are coupled with equatorial Kelvin waves and equatorial Rossby waves, using TRMM PR level 2 data products. The synoptic structures of wave disturbances are also studied using the ERA5 reanalysis dataset. We define the wave phase of equatorial waves based on FFT filtered brightness temperature and conduct composite analyses. Rossby waves show a vertically upright structure and their upright vortices induce large amplitude column water vapor (CWV) anomalies. Precipitation activity is almost in phase with CWV, and thus is consistent with a moisture mode. Kelvin waves, on the other hand, indicate a nearly quadrature phase relationship between temperature and vertical velocity, like gravity wave structure. Specific humidity develops from near the surface to middle troposphere as the Kelvin wave progresses. A clear negative CWV anomaly also does not exist despite the existence of negative precipitation anomalies. Convective activity corresponds well with its tilting structure of moisture and modulates the phase relationship between temperature and vertical motion. For both wave cases, apparent heat sources can amplify available potential energy despite of the difference of coupling mechanisms of these two waves; precipitation is driven by CWV fluctuation for the Rossby wave case, and by buoyancy-based fluctuations for the Kelvin wave case. These can be an observational evidence of actual coupling processes that is comparable to previous idealized studies.


2021 ◽  
pp. 1-52
Author(s):  
Simon C. Peatman ◽  
Juliane Schwendike ◽  
Cathryn E. Birch ◽  
John H. Marsham ◽  
Adrian J. Matthews ◽  
...  

AbstractThe canonical view of the Maritime Continent (MC) diurnal cycle is deep convection occurring over land during the afternoon and evening, tending to propagate offshore overnight. However, there is considerable day-to-day variability in the convection, and the mechanism of the offshore propagation is not well understood. We test the hypothesis that large-scale drivers such as ENSO, the MJO and equatorial waves, through their modification of the local circulation, can modify the direction or strength of the propagation, or prevent the deep convection from triggering in the first place. Taking a local-to-large scale approach we use in situ observations, satellite data and reanalyses for five MC coastal regions, and show that the occurrence of the diurnal convection and its offshore propagation is closely tied to coastal wind regimes we define using the k-means cluster algorithm. Strong prevailing onshore winds are associated with a suppressed diurnal cycle of precipitation; while prevailing offshore winds are associated with an active diurnal cycle, offshore propagation of convection and a greater risk of extreme rainfall. ENSO, the MJO, equatorial Rossby waves and westward mixed Rossby-gravity waves have varying levels of control over which coastal wind regime occurs, and therefore on precipitation, depending on the MC coastline in question. The large-scale drivers associated with dry and wet regimes are summarised for each location as a reference for forecasters.


Author(s):  
Hidenori Aiki ◽  
Yoshiki Fukutomi ◽  
Yuki Kanno ◽  
Tomomichi Ogata ◽  
Takahiro Toyoda ◽  
...  

AbstractA model diagnosis for the energy flux of off-equatorial Rossby waves in the atmosphere has previously been done using quasi-geostrophic equations and is singular at the equator. The energy flux of equatorial waves has been separately investigated in previous studies using a space-time spectral analysis or a ray theory. A recent analytical study has derived an exact universal expression for the energy flux which can indicate the direction of the group velocity for linear shallow water waves at all latitudes. This analytical result is extended in the present study to a height-dependent framework for three-dimensional waves in the atmosphere. This is achieved by investigating the classical analytical solution of both equatorial and off-equatorial waves in a Boussinesq fluid. For the horizontal component of the energy flux, the same expression has been obtained between equatorial waves and off-equatorial waves in the height-dependent framework, which is linked to a scalar quantity inverted from the isentropic perturbation of Ertel’s potential vorticity. The expression of the vertical component of the energy flux requires computation of another scalar quantity that may be obtained from the meridional integral of geopotential anomaly in a wavenumber-frequency space. The exact version of the universal expression is explored and illustrated for three-dimensional waves induced by an idealized Madden-Julian Oscillation forcing in a basic model experiment. The zonal and vertical fluxes manifest the energy transfer of both equatorial Kelvin waves and off-equatorial Rossby waves with a smooth transition at around 10°S and around 10°N. The meridional flux of wave energy represents connection between off-equatorial divergence regions and equatorial convergence regions.


2021 ◽  
Author(s):  
Wayne Yuan-Huai Tsai ◽  
Mong-Ming Lu ◽  
Chung-Hsiung Sui ◽  
Yin-Min Cho

<p>During the austral summer 2018/19, devastating floods occurred over northeast Australia that killed approximately 625,000 head of cattle and inundated over 3000 homes in Townsville. This disastrous event was attributed to a quasi-stationary monsoon depression over northeast Australia and the convection associated with MJO over the western Pacific (Cowan et al. 2019). We found that the unusual rainfall was a record-breaking subseasonal peak rainfall event (SPRE) based on the CMORPH daily precipitation data since1998 (Xie et al. 2017). The SPRE is defined as the highest 15-day accumulative rainfall in the running 90-day windows (Tsai et al. 2020). Results of observational data analysis over the recent 21 years (1998~2020) of ERA-interim, OLR, and CMORPH datasets suggest that the northeastern Australian SPREs can be influenced by multiple large-scale drivers, in particular the MJO and equatorial Rossby waves. The occurrence time of the SPRE is associated with MJO activity, while the mean rainfall intensity is more closely associated with the equatorial Rossby waves. The circulation pattern of the SPREs can also be influenced by the equatorial Rossby waves. Using the hindcast data in S2S database we found that the models can capture the SPREs up to one week of the lead times. Characteristics of the activities of MJO and equatorial Rossby waves over the Indonesia-Australia region and their implication to the extended-range SPRE predictability will be discussed.</p><p><strong>Key words: </strong>S2S prediction, Australian summer monsoon, subseasonal peak precipitation event, extreme rainfall</p><p><strong>References:</strong></p><p>Cowan, T., Wheeler, M.C., Alves, O., Narsey, S., de Burgh-Day, C., Griffiths, M., Jarvis, C., Cobon, D.H., Hawcroft, M.K., 2019. Forecasting the extreme rainfall, low tempera- tures, and strong winds associated with the northern Queensland floods of February 2019. Weather Clim. Extremes 26 (100), 232. https://doi.org/10.1016/j.wace.2019. 100232.</p><p>Tsai, W. Y.-H., M.-M. Lu, C.-H. Sui, and P.-H. Lin, 2020: MJO and CCEW Modulation on South China Sea and Maritime Continent Boreal Winter Subseasonal Peak Precipitation. Terr. Atmos. Oceanic Sci., DOI: 10.3319/TAO.2019.10.28.01</p><p>Xie, P., R. Joyce, S. Wu, S. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998. J. Hydrometeor., 18, 1617–1641, https://doi.org/10.1175/JHM-D-16-0168.1</p>


2020 ◽  
Vol 34 (34) ◽  
pp. 2050390
Author(s):  
Xiaojun Yin ◽  
Liangui Yang ◽  
Quansheng Liu

In this work, we investigate the dynamics of the equatorial Rossby waves by including the complete Coriolis force, external source and dissipation. The amplitude evolution of equatorial Rossby waves is described as an extended non-linear mKdV–Burgers equation from a potential vorticity equation and it is unlike the standard mKdV–Burgers equation. Built on the obtained model, the corresponding physical phenomena related to the non-linear Rossby waves are analyzed. Also, the subsidiary ordinary differential equation method is employed to solve the solitary solution of the mKdV equation. By analyzing the solution, we find that the horizontal component of Coriolis parameter works on the amplitude of the Rossby waves. Meanwhile, we use the Adomian decomposition method to obtain the approximate soliton solution of the model.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 711
Author(s):  
Lakemariam Worku ◽  
Ademe Mekonnen ◽  
Carl Schreck

The impacts of the Madden–Julian Oscillation (MJO), Kelvin waves, and Equatorial Rossby (ER) waves on the diurnal cycle of rainfall and types of deep convection over the Maritime Continent are investigated using rainfall from the Tropical Rainfall Measurement Mission Multisatellite Precipitation Analysis and Infrared Weather States (IR–WS) data from the International Satellite Cloud Climatology Project. In an absolute sense, the MJO produced its strongest modulations of rainfall and organized deep convection over the islands, when and where convection is already strongest. The MJO actually has a greater percentage modulation over the coasts and seas, but it does not affect weaker diurnal cycle there. Isolated deep convection was also more prevalent over land during the suppressed phase, while organized deep convection dominated the enhanced phase, consistent with past work. This study uniquely examined the effects of Kelvin and ER waves on rainfall, convection, and their diurnal cycles over the Maritime Continent. The modulation of convection by Kelvin waves closely mirrored that by the MJO, although the Kelvin wave convection continued farther into the decreasing phase. The signals for ER waves were also similar but less distinct. An improved understanding of how these waves interact with convection could lead to improved subseasonal forecast skill.


Sign in / Sign up

Export Citation Format

Share Document