scholarly journals Soil erosion and atmospheric CO2 during the last glacial maximum: the rôle of riverine organic matter fluxes

Tellus B ◽  
1999 ◽  
Vol 51 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Wolfgang Ludwig ◽  
Jean-Luc Probst
2004 ◽  
Vol 1 (1) ◽  
pp. 429-495 ◽  
Author(s):  
A. Lerman ◽  
F. T. Mackenzie

Abstract. Release of CO2 from surface ocean water owing to precipitation of CaCO3 and the imbalance between biological production of organic matter and its respiration, and their net removal from surface water to sedimentary storage was studied by means of a model that gives the quotient θ=(CO2 released to the atmosphere)/(CaCO3 precipitated). The surface ocean layer is approximated by a euphotic zone, 50 m thick, that includes the shallower coastal area and open ocean. θ depends on water temperature, CaCO3 and organic carbon mass formed, and atmospheric CO2 concentration. At temperatures between 5 and 25°C, and three atmospheric CO2 pressures – 195 ppmv corresponding to the Last Glacial Maximum, 280 ppmv for the end of pre-industrial time, and 375 ppmv for the present – θ varies from a fraction of 0.38 to 0.79, increasing with decreasing temperature, increasing atmospheric CO2 content, and increasing CaCO3 precipitated mass (up to 45% of the DIC concentration in surface water). For a surface ocean layer that receives input of inorganic and organic carbon from land, the calculated CO2 flux to the atmosphere at the Last Glacial Maximum is 20 to 22×1012 mol/yr and in pre-industrial time it is 45 to 49×1012 mol/yr. In addition to the environmental factors mentioned above, flux to the atmosphere and increase of atmospheric CO2 depend on the thickness of the surface ocean layer. The significance of these fluxes and comparisons with the estimates of other investigators are discussed. Within the imbalanced global carbon cycle, our estimates are in agreement with the conclusions of others that the global ocean prior to anthropogenic emissions of CO2 to the atmosphere was losing carbon, calcium, and total alkalinity owing to precipitation of CaCO3 and consequent emission of CO2. Other pathways of CO2 exchange between the atmosphere and land organic reservoir and rock weathering may reduce the imbalances in the carbon cycle on millenial time scales.


2013 ◽  
Vol 9 (4) ◽  
pp. 1571-1587 ◽  
Author(s):  
R. O'ishi ◽  
A. Abe-Ouchi

Abstract. When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.


2009 ◽  
Vol 5 (4) ◽  
pp. 695-706 ◽  
Author(s):  
A. Tagliabue ◽  
L. Bopp ◽  
D. M. Roche ◽  
N. Bouttes ◽  
J.-C. Dutay ◽  
...  

Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.


2019 ◽  
Author(s):  
Cameron M. O'Neill ◽  
Andrew McC. Hogg ◽  
Michael J. Ellwood ◽  
Bradley N. Opdyke ◽  
Stephen M. Eggins

Abstract. We conduct a model-data analysis of the ocean, atmosphere and terrestrial carbon system to understand their effects on atmospheric CO2 during the last glacial cycle. We use a carbon cycle box model SCP-M, combined with multiple proxy data for the atmosphere and ocean, to test for variations in ocean circulation and biological productivity across marine isotope stages spanning 130 thousand years ago to the present. The model is constrained by proxy data associated with a range of environmental conditions including sea surface temperature, salinity, ocean volume, sea ice cover and shallow water carbonate production. Model parameters for global ocean circulation, Atlantic meridional overturning circulation and Southern Ocean biological export productivity are optimised in each marine isotope stage, against proxy data for atmospheric CO2, δ13C and ∆14C and deep ocean δ13C, ∆14C and carbonate ion. Our model-data results suggest that global overturning circulation weakened at marine isotope stage 5d, coincident with a ∼ 25 ppm fall in atmospheric CO2 from the penultimate interglacial level. This change was followed by a further slowdown in Atlantic meridional overturning circulation and enhanced Southern Ocean biological export productivity at marine isotope stage 4 (∼−30 ppm). There was also a transient slowdown in Atlantic meridional overturning circulation at MIS 5b. In this model, the last glacial maximum was characterised by relatively weak global ocean and Atlantic meridional overturning circulation, and increased Southern Ocean biological export productivity (∼−15–20 ppm during MIS 2–4). Ocean circulation and Southern Ocean biology rebounded to modern values by the Holocene period. The terrestrial biosphere decreased by ∼ 500 Pg C in the lead up to the last glacial maximum, followed by a period of intense regrowth during the Holocene (∼ 750 Pg C). Slowing ocean circulation, a cooler ocean and, to a lesser extent, shallow carbonate dissolution, contributed ∼−75 ppm to atmospheric CO2 in the ∼ 100 thousand-year lead-up to the last glacial maximum, with a further ∼−10 ppm contributed during the glacial maximum. Our model results also suggest that an increase in Southern Ocean biological productivity was one of the ingredients required to achieve the last glacial maximum atmospheric CO2 level. The incorporation of longer-timescale data into quantitative ocean transport models, provides useful insights into the timing of changes in ocean processes, enhancing our understanding of the last glacial maximum and Holocene carbon cycle transition.


2018 ◽  
Author(s):  
Aurich Jeltsch-Thömmes ◽  
Gianna Battaglia ◽  
Olivier Cartapanis ◽  
Samuel L. Jaccard ◽  
Fortunat Joos

Abstract. Atmospheric CO2 increased by about 90 ppm across the transition from the Last Glacial Maximum (LGM) to the end of the preindustrial (PI) period. The contribution of changes in land carbon stocks to this increase remains uncertain. Estimates of the PI-LGM difference in land biosphere carbon inventory (∆land) range from −400 to +1,500 GtC, based on upscaling of scarce paleo soil carbon or pollen data. A perhaps more reliable approach infers ∆land from reconstructions of the stable carbon isotope ratio in the ocean and atmosphere assuming isotopic mass balance with recent studies yielding ∆land values of about 300–400 GtC. Surprisingly, however, earlier studies considered a mass balance for the ocean–atmosphere–land biosphere system only. Thereby, these studies neglect carbon exchange with sediments, weathering-burial flux imbalances, and the influence of the deglacial reorganization on the isotopic budgets. We show this neglect to significantly bias low deglacial ∆land in simulations using the Bern3D Earth System Model of Intermediate Complexity v.2.0s. We constrain ∆land to ∼ 850 GtC (median estimate; 450 to 1250 GtC 1σ range) by using reconstructed changes in atmospheric δ13C, marine δ13C, deep Pacific carbonate ion concentration, and atmospheric CO2 as observational targets in a Monte Carlo ensemble with half a million members. Sensitivities of the target variables to changes in individual deglacial carbon cycle processes are established from factorial simulations over the past 21,000 years with the Bern3D model. These are used in the Monte Carlo ensemble and provide forcing–response relationships for future model–model and model–data comparisons. Uncertainties in the estimate of ∆land remain considerable due to model and proxy data uncertainties. Yet, it is likely that ∆land is larger than 450 GtC and highly unlikely that the carbon inventory in the land biosphere was larger for the LGM than during the recent preindustrial period.


Sign in / Sign up

Export Citation Format

Share Document