carbon inventory
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 944 (1) ◽  
pp. 012058
Author(s):  
A J Wahyudi ◽  
F Febriani

Abstract Climate action regarding carbon inventory requires baseline assessment, data regarding annual changes, and evaluation of reductions in carbon emissions. However, many studies of seagrass ecosystems have focused only on carbon stock and sequestration, neglecting the importance of the carbon emission factor. It is known that emission factors for land-use change, including those in seagrass ecosystems, can be derived from biomass and sediment carbon stock. Since currently Indonesia only has data for biomass carbon stock, we propose the measurement of province-based emission factors. This study combines the available carbon stock data reported in national or international publications and conducts a meta-analysis to obtain emission factor values. The results show that the biomass standing carbon stock of Indonesia’s seagrass meadows ranges from 0.30 tC/ha (i.e., Special Region of Yogyakarta) to 16.51 tC/ha (i.e., Gorontalo province), while emission factor ranges from 0.012 tC/ha/yr to 0.661 tC/ha/yr (equal to 0.05 t CO2/ha/yr to 2.42 t CO2/ha/yr). These findings will be beneficial for developing Tier 3 carbon inventory since they allow country-specific emission factor for the seagrass ecosystem to be measured.


2020 ◽  
Vol 34 (12) ◽  
Author(s):  
Chiara Volta ◽  
David T. Ho ◽  
Damien T. Maher ◽  
Rik Wanninkhof ◽  
Gernot Friederich ◽  
...  

2020 ◽  
Vol 117 (39) ◽  
pp. 24088-24095
Author(s):  
Laura L. Haynes ◽  
Bärbel Hönisch

The Paleocene–Eocene Thermal Maximum (PETM) (55.6 Mya) was a geologically rapid carbon-release event that is considered the closest natural analog to anthropogenic CO2 emissions. Recent work has used boron-based proxies in planktic foraminifera to characterize the extent of surface-ocean acidification that occurred during the event. However, seawater acidity alone provides an incomplete constraint on the nature and source of carbon release. Here, we apply previously undescribed culture calibrations for the B/Ca proxy in planktic foraminifera and use them to calculate relative changes in seawater-dissolved inorganic carbon (DIC) concentration, surmising that Pacific surface-ocean DIC increased by +1,010−646+1,415 µmol/kg during the peak-PETM. Making reasonable assumptions for the pre-PETM oceanic DIC inventory, we provide a fully data-driven estimate of the PETM carbon source. Our reconstruction yields a mean source carbon δ13C of −10‰ and a mean increase in the oceanic C inventory of +14,900 petagrams of carbon (PgC), pointing to volcanic CO2 emissions as the main carbon source responsible for PETM warming.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew J. Watson ◽  
Ute Schuster ◽  
Jamie D. Shutler ◽  
Thomas Holding ◽  
Ian G. C. Ashton ◽  
...  

2020 ◽  
Vol 17 (12) ◽  
pp. 3083-3097
Author(s):  
Artem G. Lim ◽  
Martin Jiskra ◽  
Jeroen E. Sonke ◽  
Sergey V. Loiko ◽  
Natalia Kosykh ◽  
...  

Abstract. Natural and anthropogenic mercury (Hg) emissions are sequestered in terrestrial soils over short, annual to long, millennial timescales before Hg mobilization and run-off impact wetland and coastal ocean ecosystems. Recent studies have used Hg-to-carbon (C) ratios (RHgC's) measured in Alaskan permafrost mineral and peat soils together with a northern circumpolar permafrost soil carbon inventory to estimate that these soils contain large amounts of Hg (between 184 and 755 Gg) in the upper 1 m. However, measurements of RHgC on Siberian permafrost peatlands are largely missing, leaving the size of the estimated northern soil Hg budget and its fate under Arctic warming scenarios uncertain. Here we present Hg and carbon data for six peat cores down to mineral horizons at 1.5–4 m depth, across a 1700 km latitudinal (56 to 67∘ N) permafrost gradient in the Western Siberian Lowland (WSL). Mercury concentrations increase from south to north in all soil horizons, reflecting a higher stability of sequestered Hg with respect to re-emission. The RHgC in the WSL peat horizons decreases with depth, from 0.38 Gg Pg−1 in the active layer to 0.23 Gg Pg−1 in continuously frozen peat of the WSL. We estimate the Hg pool (0–1 m) in the permafrost-affected part of the WSL peatlands to be 9.3±2.7 Gg. We review and estimate pan-Arctic organic and mineral soil RHgC to be 0.19 and 0.63 Gg Pg−1, respectively, and use a soil carbon budget to revise the pan-Arctic permafrost soil Hg pool to be 72 Gg (39–91 Gg; interquartile range, IQR) in the upper 30 cm, 240 Gg (110–336 Gg) in the upper 1 m, and 597 Gg (384–750 Gg) in the upper 3 m. Using the same RHgC approach, we revise the upper 30 cm of the global soil Hg pool to contain 1086 Gg of Hg (852–1265 Gg, IQR), of which 7 % (72 Gg) resides in northern permafrost soils. Additional soil and river studies in eastern and northern Siberia are needed to lower the uncertainty on these estimates and assess the timing of Hg release to the atmosphere and rivers.


2020 ◽  
Vol 221 ◽  
pp. 103783 ◽  
Author(s):  
Mehdia Asma Keraghel ◽  
Ferial Louanchi ◽  
Mohamed Zerrouki ◽  
Malik Aït Kaci ◽  
Nadira Aït-Ameur ◽  
...  

2020 ◽  
Vol 117 (16) ◽  
pp. 8743-8749 ◽  
Author(s):  
Rebecca A. Fischer ◽  
Elizabeth Cottrell ◽  
Erik Hauri ◽  
Kanani K. M. Lee ◽  
Marion Le Voyer

Earth’s core is likely the largest reservoir of carbon (C) in the planet, but its C abundance has been poorly constrained because measurements of carbon’s preference for core versus mantle materials at the pressures and temperatures of core formation are lacking. Using metal–silicate partitioning experiments in a laser-heated diamond anvil cell, we show that carbon becomes significantly less siderophile as pressures and temperatures increase to those expected in a deep magma ocean during formation of Earth’s core. Based on a multistage model of core formation, the core likely contains a maximum of 0.09(4) to 0.20(10) wt% C, making carbon a negligible contributor to the core’s composition and density. However, this accounts for ∼80 to 90% of Earth’s overall carbon inventory, which totals 370(150) to 740(370) ppm. The bulk Earth’s carbon/sulfur ratio is best explained by the delivery of most of Earth’s volatiles from carbonaceous chondrite-like precursors.


2020 ◽  
Author(s):  
Charles Turner ◽  
Kevin Oliver ◽  
Peter Brown ◽  
Elaine McDonagh

<p><span>Whilst anthropogenic activities are significantly altering the climate, both warming the atmosphere and increasing CO2, the ocean is</span></p><p><span>significantly ameliorating both effects. This effect is so important that the transient climate response to carbon emissions (TCRE), can be</span></p><p><span>formulated primarily in terms of the ocean. We show that in direct analogy to the TCRE, Anthropogenic Carbon (Canth) and temperature increases in the ocean are</span></p><p><span>linearly related, both globally and integrated over a range of scales. These ocean responses are typically of order 0.02K/mumol/kg,</span></p><p><span>(equivalently ~80MJ/mol). This linear relation allows for direct translation between temperature and carbon inventory increases. Furthermore,</span></p><p><span>we are far better able to decompose DIC changes into Canth increases and that of other carbon pools, than we are decomposing heat</span></p><p><span>inventory changes into added and redistributed heat. By separating total DIC change into Canth and that of other carbon pools, we can therefore remove the effect</span></p><p><span>of the transient response relationship between heat and carbon. This allows the production of estimates of added and redistributed heat in the</span></p><p><span>ocean from remaining DIC changes. Our results suggest that the variability of the transient response is predominately set by heat uptake, not carbon, and that this</span></p><p><span>variability may be traced to individual water masses. Therefore, it may be necessary to separate this transient response regionally in order</span></p><p><span>to obtain accurate estimates of added and redistributed heat at a global scale using this technique. The Eulerian transient response is set</span></p><p><span>predominantly by isotherm heave. The part of the transient response set by climate sensitivity, analogous to a semi-Lagrangian approach, is</span></p><p><span>set largely by patterns of regional heat uptake.</span></p>


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 815 ◽  
Author(s):  
Shanshan Du ◽  
Liangyun Liu ◽  
Xinjie Liu ◽  
Xinwei Zhang ◽  
Xianlian Gao ◽  
...  

The global monitoring of solar-induced chlorophyll fluorescence (SIF) using satellite-based observations provides a new way of monitoring the status of terrestrial vegetation photosynthesis on a global scale. Several global SIF products that make use of atmospheric satellite data have been successfully developed in recent decades. The Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1), the first Chinese terrestrial ecosystem carbon inventory satellite, which is due to be launched in 2021, will carry an imaging spectrometer specifically designed for SIF monitoring. Here, we use an extensive set of simulated data derived from the MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5) and Soil Canopy Observation Photosynthesis and Energy (SCOPE) models to evaluate and optimize the specifications of the SIF Imaging Spectrometer (SIFIS) onboard TECIS for accurate SIF retrievals. The wide spectral range of 670−780 nm was recommended to obtain the SIF at both the red and far-red bands. The results illustrate that the combination of a spectral resolution (SR) of 0.1 nm and a signal-to-noise ratio (SNR) of 127 performs better than an SR of 0.3 nm and SNR of 322 or an SR of 0.5 nm and SNR of 472 nm. The resulting SIF retrievals have a root-mean-squared (RMS) diff* value of 0.15 mW m−2 sr−1 nm−1 at the far-red band and 0.43 mW m−2 sr−1 nm−1 at the red band. This compares with 0.20 and 0.26 mW m−2 sr−1 nm−1 at the far-red band and 0.62 and 1.30 mW m−2 sr−1 nm−1 at the red band for the other two configurations described above. Given an SR of 0.3 nm, the increase in the SNR can also improve the SIF retrieval at both bands. If the SNR is improved to 450, the RMS diff* will be 0.17 mW m−2 sr−1 nm−1 at the far-red band and 0.47 mW m−2 sr−1 nm−1 at the red band. Therefore, the SIFIS onboard TECIS-1 will provide another set of observations dedicated to monitoring SIF at the global scale, which will benefit investigations of terrestrial vegetation photosynthesis from space.


2020 ◽  
Author(s):  
Artem G. Lim ◽  
Martin Jiskra ◽  
Jeroen E. Sonke ◽  
Sergey V. Loiko ◽  
Natalia Kosykh ◽  
...  

Abstract. Natural and anthropogenic mercury (Hg) emissions are sequestered in terrestrial soils over short, annual, to long, millennial time scales, before Hg mobilization and run-off impacts wetland and coastal Ocean ecosystems. Recent studies have used Hg to carbon (C) ratios, RHgC, measured in Alaskan permafrost mineral and peat soils, together with a northern soil carbon inventory, to estimate that these soils contain large amounts, 184 to 755 Gg of Hg in the upper 1 m. However, measurements of RHgC on Siberian permafrost peatlands are largely missing, leaving the size of estimated northern soil Hg budget, and its fate under arctic warming scenarios uncertain. Here we present Hg and carbon data for 6 peat cores, down to mineral horizons at 1.5–4 m depth, across a 1700 km latitudinal (56 to 67° N) permafrost gradient in the Western Siberian lowlands (WSL). Hg concentrations increase from south to north in all soil horizons, reflecting enhanced net accumulation of atmospheric gaseous Hg by the vegetation Hg pump. The RHgC in WSL peat horizons decreases with depth from 0.38 Gg Pg−1 in the active layer to 0.23 Gg Pg−1 in continuously frozen peat of the WSL. We estimate the Hg pool (0 1 m) in the permafrost-affected part of WSL peatlands to be 9.3 ± 2.7 Gg. We review and estimate pan-arctic organic and mineral soil RHgC to be 0.19 and 0.77 Gg Pg−1, and use a soil carbon budget to revise the northern soil Hg pool to be 67 Gg (37–88 Gg, interquartile range (IQR)) in the upper 30 cm, 225 Gg (102–320 Gg) in the upper 1 m, and 557 Gg (371–699 Gg) in the upper 3 m. Using the same RHgC approach, we revise the global upper 30 cm soil Hg pool to contain 1078 Gg of Hg (842–1254 Gg, IQR), of which 6 % (67 Gg) resides in northern permafrost soils. Additional soil and river studies must be performed in Eastern and Northern Siberia to lower the uncertainty on these estimates, and assess the timing of Hg release to atmosphere and rivers.


Sign in / Sign up

Export Citation Format

Share Document